Экспертное сообщество по ремонту ванных комнат

Утилизация теплоты. Потенциальные возможности утилизации сбросной теплоты

Затраты теплоты на подогрев санитарной нормы приточного наружного воздуха при современных методах теплозащиты ограждающих конструкций составляют в жилых домах до 80 % тепловой нагрузки на отопительные приборы, а в общественно-административных зданиях - более 90%. Поэтому энергосберегающие системы отопления в современных конструкциях зданий могут быть созданы только при условии

утилизации теплоты вытяжного воздуха на нагрев санитарной нормы приточного наружного воздуха.

Также успешен опыт применения в административном здании в Москве установки утилизации с насосной циркуляцией промежуточного теплоносителя - антифриза.

При расположении приточных и вытяжных агрегатов на расстоянии более 30 м друг от друга система утилизации с насосной циркуляцией антифриза является наиболее рациональной и экономичной. В случае расположения их рядом возможно еще более эффективное решение. Так в климатических районах с мягкими зимами, когда температура наружного воздуха не опускаются ниже -7 °С, широко применяются пластинчатые теплоутилизаторы.

На рис. 1 показана конструктивная схема пластинчатого рекуперативного (теплоотдача осуществляется через разделительную стенку) теплоутилизационного теплообменника. Здесь показан (рис. 1, а) «воздухо-воздушный» теплоутилизатор, собранный из пластинчатых каналов, которые могут изготавливаться из тонкой листовой оцинкованной стали, алюминия и др.

Рисунок 1. а - пластинчатые каналы, в которых сверху над разделительными стенками каналов поступает вытяжной воздух L y , а горизонтально-приточный наружный воздух L п.н; б - трубчатые каналы, в которых сверху в трубках проходит вытяжной воздух L y , а горизонтально в межтрубном пространстве проходит приточный наружный воздух L п.н

Пластинчатые каналы заключаются в кожух, имеющий фланцы для присоединения к приточным и вытяжным воздуховодам.

На рис. 1, б показан «воздухо-воздушный» теплообменник из трубчатых элементов, которые могут быть также изготовлены из алюминия, оцинкованной стали, пластмассы, стекла и др. Трубы закрепляются в верхние и нижние трубные решетки, что формирует каналы для прохода вытяжного воздуха. Боковые стенки и трубные решетки образуют каркас теплообменника, с открытыми фасадными сечениями, которые присоединяются к воздуховоду поступления приточного наружного воздуха L п.н.

Благодаря развитой поверхности каналов и устройства в них турбулизирующих воздух насадок в таких «воздухо-воздушных» теплообменниках достигается высокая теплотехническая эффективность θ t п.н (до 0,75), и это является главным достоинством таких аппаратов.

Недостатком этих рекуператоров является необходимость предподогрева приточного наружного воздуха в электрокалориферах до температуры не ниже -7 °С (во избежание замерзания конденсата на стороне влажного вытяжного воздуха).

На рис. 2 показана конструктивная схема приточно-вытяжного агрегата с пластинчатым утилизатором теплоты вытяжного воздуха L у на нагрев приточного наружного воздуха L п.н. Приточный и вытяжной агрегаты выполняются в едином корпусе. Первыми на входе приточного наружного L п.н и удаляемого вытяжного L у воздуха установлены фильтры 1 и 4. Оба очищенных потока воздуха от работы приточного 5 и вытяжного 6 вентиляторов проходят через пластинчатый теплоутилизатор 2, где энергия отепленного вытяжного воздуха L у передается холодному приточному L п.н.

Рисунок 2. Конструктивная схема приточного и вытяжного агрегатов с пластинчатым утилизатором, имеющим обводной воздушный канал по приточному наружному воздуху: 1 - воздушный фильтр в приточном агрегате; 2 - пластинчатый утилизационный теплообменник; 3 - фланец присоединения воздушного тракта поступления вытяжного воздуха; 4 - фильтр карманный для очистки вытяжного воздуха L у; 5 - приточный вентилятор с электродвигателем на одной раме; 6 - вытяжной вентилятор с электродвигателем на одной раме; 7 - поддон сбора из каналов прохождения вытяжного воздуха сконденсированной влаги; 8 - трубопровод отвода конденсата; 9 - обводной воздушный канал для прохода приточного воздуха L п.н; 10 - автоматический привод воздушных клапанов в обводном канале; 11 - калорифер догрева приточного наружного воздуха, питаемый горячей водой

Как правило, вытяжной воздух имеет повышенное влагосодержание и температуру точки росы не ниже +4 °С. При поступлении в каналы теплоутилизатора 2 холодного наружного воздуха с температурой ниже +4 °С на разделительных стенках установится температура, при которой на части поверхности каналов со стороны движения удаляемого вытяжного воздуха будет происходить конденсация водяных паров.

Образовавшийся конденсат под воздействием потока воздуха L у, будет интенсивно стекать в поддон 7, откуда по присоединенному к патрубку 8 трубопроводу отводится в канализацию (или бак-накопитель).

Для пластинчатого утилизатора характерно следующее уравнение теплового баланса переданной теплоты к наружному приточному воздуху:

где Q ту - утилизируемая приточным воздухом теплоэнергия; L у, L п.н - расходы отепленного вытяжного и наружного приточного воздуха, м 3 /ч; ρ у, ρ п.н - удельные плотности отепленного вытяжного и наружного приточного воздуха, кг/м 3 ; I y 1 и I y 2 - начальная и конечная энтальпия отепленного вытяжного воздуха, кДж/кг; t н1 и t н2 , с р - начальные и конечные температуры, °С, и теплоемкость, кДж/(кг · °С), наружного приточного воздуха.

При низких начальных температурах наружного воздуха t н.х ≈ t н1 на разделительных стенках каналов выпадающий из вытяжного воздуха конденсат не успевает стекать в поддон 7, а замерзает на стенках, что приводит к сужению проходного сечения и увеличивает аэродинамическое сопротивление проходу вытяжного воздуха. Это увеличение аэродинамического сопротивления воспринимается датчиком, который передает команду на привод 10 на открытие воздушных клапанов в обводном канале (байпасе) 9.

Испытания пластинчатых утилизаторов в климате России показали, что при снижении температуры наружного воздуха до t н.х ≈ t н1 ≈ -15 °С, воздушные клапаны в байпасе 9 полностью открыты и весь приточный наружный воздух L п.н проходит, минуя пластинчатые каналы теплоутилизатора 2.

Нагрев приточного наружного воздуха L п.н от t н.х до t п.н осуществляется в калорифере 11, питаемом горячей водой из центрального источника теплоснабжения. В этом режиме Q ту, вычисляемое по уравнению (9.10), равно нулю, так как через присоединенный теплоутилизатор 2 проходит только вытяжной воздух и I y 1 ≈ I y 2 , т.е. утилизация теплоты отсутствует.

Вторым методом предотвращения замерзания конденсата в каналах теплообменника 2 является электрический предподогрев приточного наружного воздуха от t н.х до t н1 = -7 °С. В расчетных условиях холодного периода года в климате Москвы холодный приточный наружный воздух в электрокалорифере нужно нагревать на ∆t т.эл = t н1 - t н.х = -7 + 26 = 19 °С. Нагрев приточного наружного воздуха при θ t п.н = 0,7 и t у1 = 24 °С составит t п.н = 0,7 · (24 + 7) - 7 = 14,7 °С или ∆t т.у = 14,7 + 7 = 21,7 °С.

Расчет показывает, что в этом режиме нагрев в теплоутилизаторе и в калорифере практически одинаков. Использование байпаса или электрического предподогрева значительно снижает теплотехническую эффективность пластинчатых теплообменников в системах приточно-вытяжной вентиляции в климате России.

Для устранения этого недостатка отечественными специалистами разработан оригинальный метод быстрого периодического размораживания пластинчатых теплоутилизаторов путем подогрева удаляемого вытяжного воздуха, обеспечивающий надежную и энергоэффективную круглогодовую работу агрегатов.

На рис. 3 показана принципиальная схема установки утилизации теплоты вытяжного воздуха X на нагрев приточного наружного воздуха L п.н с быстрым устранением обмерзания каналов 2 для улучшения прохода удаляемого воздуха через пластинчатый теплоутилизатор 1.

Воздуховодами 3 теплоутилизатор 1 соединен с трактом прохождения приточного наружного воздуха L п.н, а воздуховодами 4 с трактом прохождения удаляемого вытяжного воздуха L у.

Рисунок 3. Принципиальная схема применения пластинчатого теплоутилизатора в климате России: 1 - пластинчатый теплоутилизатор; 2 - пластинчатые каналы для прохода холодного приточного наружного воздуха L п.н и теплого вытяжного удаляемого воздуха L у; 3 - присоединительные воздуховоды прохода приточного наружного воздуха L п.н; 4 - присоединительные воздуховоды прохода удаляемого вытяжного воздуха L у; 5 - калорифер в потоке удаляемого воздуха L у на входе в каналы 2 пластинчатого теплообменника 1,6- автоматический клапан на трубопроводе подачи горячей воды G w г; 7 - электрическая связь; 8 - датчик контроля сопротивления воздушного потока в каналах 2 для прохода вытяжного воздуха L у; 9 - отвод конденсата

При низких температурах приточного наружного воздуха (t н1 = t н. x ≤ 7 °С) через стенки пластинчатых каналов 2 теплота от вытяжного воздуха передается полностью теплоте, отвечающей уравнению теплового баланса [см. формулу (1)]. Снижение температуры вытяжного воздуха происходит с обильной конденсацией влаги на стенках пластинчатых каналов. Часть конденсата успевает стечь из каналов 2 и по трубопроводу 9 удаляется в канализацию (или бак-накопитель). Однако большая часть конденсата замерзает на стенках каналов 2. Это вызывает возрастание перепада давления ∆Р у в потоке удаляемого воздуха, замеряемого датчиком 8.

При возрастании ∆Р у до настроенной величины от датчика 8 через проводную связь 7 последует команда на открытие автоматического клапана 6 на трубопроводе подачи горячей воды G w г в трубки калорифера 5, установленного в воздуховоде 4 поступления удаляемого вытяжного воздуха в пластинчатый утилизатор 1. При открытом автоматическом клапане 6 в трубки калорифера 5 поступит горячая вода G w г, что вызовет повышение температуры удаляемого воздуха t y 1 до 45-60 °С.

При прохождении по каналам 2 удаляемого воздуха с высокой температурой произойдет быстрое оттаивание со стенок каналов наледей и образующийся конденсат по трубопроводу 9 стечет в канализацию (или в бак-накопитель конденсата).

После оттайки наледей перепад давлений в каналах 2 понизится и датчик 8 через связь 7 подаст команду на закрытие клапана 6 и подача горячей воды в калорифер 5 прекратится.

Рассмотрим процесс утилизации теплоты на I-d диаграмме, представленный на рис. 4.

Рисунок 4. Построение на I-d-диаграмме режима работы в климате Москвы установки утилизации с пластинчатым теплообменником и размораживанием его по новому методу (по схеме на рис. 3). У 1 -У 2 - расчетный режим извлечения теплоты из вытяжного удаляемого воздуха; Н 1 - Н 2 - нагрев утилизируемой теплотой приточного наружного воздуха в расчетном режиме; У 1 - У под 1 - нагрев вытяжного воздуха в режиме размораживания от наледей пластинчатых каналов прохождения удаляемого воздуха; У 1. раз - начальные параметры удаляемого воздуха после отдачи теплоты на оттаивание наледей на стенках пластинчатых каналов; H 1 -Н 2 - нагрев приточного наружного воздуха в режиме размораживания пластинчатого утилизационного теплообменника

Проведем оценку влияния метода размораживания пластинчатых теплоутилизаторов (по схеме на рис. 3) на теплотехническую эффективность режимов утилизации теплоты вытяжного воздуха на следующем примере.

ПРИМЕР 1. Исходные условия: В крупном московском (t н.х = -26 °С) производственно-административном здании в системе приточно-вытяжной вентиляции смонтирована теплоутилизационная установка (ТУУ) на базе рекуперативного пластинчатого теплообменника (с показателем θ t п.н = 0,7). Объем и параметры удаляемого вытяжного воздуха в процессе охлаждения составляют: L у = 9000 м 3 /ч, t у1 = 24 °С, I y 1 = 40 кДж/кг, t р.у1 = 7 °С, d у1 = 6,2 г/кг (см. построение на I-d-диаграмме на рис. 4). Расход приточного наружного воздуха L п.н = 10 000 м 3 /ч. Размораживание теплоутилизатора производится методом периодического повышения температуры удаляемого воздуха, как это показано на схеме рис. 3.

Требуется: Установить теплотехническую эффективность режимов утилизации теплоты с использованием нового метода периодической оттайки пластин аппарата.

Решение: 1. Вычисляем температуру нагретого утилизируемой теплотой приточного наружного воздуха в расчетных условиях холодного периода года при t н.х = t н1 = -26 °С:

2. Вычисляем количество утилизируемой теплоты за первый час работы установки утилизации, когда обмерзание пластинчатых каналов не повлияло на теплотехническую эффективность, но повысило аэродинамическое сопротивление в каналах прохождения удаляемого воздуха:

3. Через час работы ТУУ в расчетных зимних условиях на стенках каналов накопился слой инея, который вызвал повышение аэродинамического сопротивления ∆Р у. Определим возможное количество льда на стенках каналов прохода вытяжного воздуха через пластинчатый теплоутилизатор, образованного в течение часа. Из уравнения теплового баланса (1) вычислим энтальпию охлажденного и осушенного вытяжного воздуха:

Для рассматриваемого примера по формуле (2) получим:

На рис. 4 представлено построение на I-d-диаграмме режимов нагрева приточного наружного воздуха (процесс H 1 - H 2) утилизируемой теплотой вытяжного воздуха (процесс У 1 -У 2). Построением на I-d-диаграмме получены остальные параметры охлажденного и осушенного вытяжного воздуха (см. точку У 2): t у2 = -6,5 °С, d у2 = 2,2 г/кг.

4. Количество выпавшего из вытяжного воздуха конденсата вычисляется по формуле:

По формуле (4) вычисляем количество холода, затраченного на понижение температуры льда: Q = 45 · 4,2 · 6,5/3,6 = 341 Вт · ч. На образование льда затрачивается следующее количество холода:

Общее количество энергии, идущей на образование наледей на разделительной поверхности пластинчатых теплоутилизаторов, составит:

6. Из построения на I-d-диаграмме (рис. 4) видно, что при противоточном движении по пластинчатым каналам приточного L п.н и вытяжного L у воздушных потоков на входе в пластинчатый теплообменник наиболее холодного наружного воздуха по другую сторону разделительных стенок пластинчатых каналов проходит охлажденный до отрицательных температур вытяжной воздух. Именно в этой части пластинчатого теплообменника и наблюдаются интенсивные образования наледей и инея, которые будут перекрывать каналы для прохода вытяжного воздуха. Это вызовет повышение аэродинамического сопротивления.

Датчик контроля при этом подаст команду на открытие автоматического клапана поступления горячей воды в трубки теплообменника, смонтированного в вытяжном воздуховоде до пластинчатого теплообменника, что обеспечит нагрев вытяжного воздуха до температуры t у.под.1 = +50 °С.

Поступление горячего воздуха в пластинчатые каналы обеспечило за 10 мин оттайку замерзшего конденсата, который в жидком виде удаляется в канализацию (в бак-накопитель). За 10 мин нагрева вытяжного воздуха затрачено следующее количество теплоты:

или по формуле (5) получим:

7. Подведенная в калорифере 5 (рис. 3) теплота частично расходуется на растаивание наледей, что по расчетам в п. 5 потребует Q т.рас = 4,53 кВт · ч теплоты. На передачу теплоты к приточному наружному воздуху из затраченной теплоты в калорифере 5 на нагрев вытяжного воздуха останется теплоты:

8. Температура подогретого вытяжного воздуха после затраты части теплоты на размораживание вычисляется по формуле:

Для рассматриваемого примера по формуле (6) получим:

9. Подогретый в калорифере 5 (см. рис. 3) вытяжной воздух будет способствовать не только размораживанию наледей конденсата, но и увеличению передачи теплоты к приточному воздуху через разделительные стенки пластинчатых каналов. Вычислим температуру нагретого приточного наружного воздуха:

10. Количество теплоты, переданной на нагрев приточного наружного воздуха в течение 10 мин размораживания, вычисляется по формуле:

Для рассматриваемого режима по формуле (8) получим:

Расчет показывает, что в рассматриваемом режиме размораживания нет потерь теплоты, так как часть теплоты подогрева из удаляемого воздуха Q т.у =12,57 кВт · ч переходит на дополнительный догрев приточного наружного воздуха L п.н до температуры t н2.раз = 20,8 °С, вместо t н2 = +9 °С при использовании только теплоты вытяжного воздуха с температурой t у1 = +24 °С (см. п. 1).

Из всех видов потребляемой в химической промышленности энергии первое место принадлежит тепловой энергии. Степень использования тепла при проведении химико-технологического процесса определяется тепловым К.П.Д.:

где Q т и Q пр соответственно количество тепла, теоретически и практически затрачивае­мого на осуществление реакции.

Использование вторичных энергетических ресурсов (отходов) повышает К.П.Д. Энергетические отходы используются в химических и других отраслях промышленности для различных нужд.

Особенно большое значение в химической промышленности имеет утилизация тепла продуктов реакций, выходящих из реакторов, для предварительного нагрева материалов, поступающих в эти же реакторы. Такой нагрев осуществляется в аппаратах, называемых регенераторами, рекуператорами и котлами-утилизаторами. Они накапливают тепло отхо­дящих газов или продуктов и отдают его для проведения процессов.

Регенераторы представляют собой периодически действующие камеры, заполненные насадкой. Для непрерывного процесса необходимо иметь, по крайней мере, 2 регенера­тора.

Горячий газ сначала проходит через регенератор А, нагревает его насадку, а сам охлажда­ется. Холодный газ проходит через регенератор Б и нагревается от ранее нагретой на­садки. После нагрева насадки в А и охлаждения в Б заслонки перекрывают и т.д.

В рекуператорах реагенты поступают в теплообменник, где нагреваются за счёт те­пла горячих продуктов, выходящих из реакционного аппарата, и затем подаются в реак­тор. Теплообмен происходит через стенки трубок теплообменника.

В котлах-утилизаторах тепло отходящих газов и продуктов реакции используют для получения пара.

Горячие газы движутся по трубам, размещённым в корпусе котла. В межтрубном про­странстве находится вода. Образующийся пар, проходя влагоотделитель, выходит из котла.

Сырьё

Химическая промышленность характеризуется высокой материалоёмкостью произ­водства. На одну тонну готовой химической продукции расходуется, как правило, не­сколько тонн сырья и материалов. Отсюда следует, что себестоимость химической про­дукции в значительной мере определяется качеством сырья, способами и стоимостью его получения и подготовки. В химической промышленности затраты на сырьё в себестоимо­сти продукции составляют 60-70% и более.

От вида и качества сырья существенно зависит полнота использования производст­венных мощностей отраслей химической промышленности, производительность тепла, продолжительность работы оборудования, затраты труда и т.д. Свойства сырья, содержа­ние в нём полезных и вредных компонентов определяют применяемую технологию его обработки.

Виды сырья весьма разнообразны, и их можно разделить на следующие группы:

  1. минеральное сырьё;
  2. растительное и животное сырьё;
  3. воздух, вода.

1. Минеральное сырьё – полезные ископаемые, добываемые из земных недр.

Полезные ископаемые в свою очередь подразделяются на:

  • рудные (получение металлов) важные полиметаллические руды
  • нерудные (удобрения, соли, H + , OH - стекло и т.д.)
  • горючие (угли, нефть, газ, сланцы)

Рудное сырьё – это горные породы, из которых экологически выгодно получать ме­таллы. Металлы в нём находятся большей частью в виде оксидов и сульфидов. Руды цвет­ных металлов довольно часто содержат в своём составе соединения нескольких металлов – это сульфиды Pb, Cu, Zn, Ag, Ni и др. Такие руды называют полиметаллическими или комплексными. Непременной составной частью всех промышленных руд является FeS 2 – пирит. При переработке некоторых руд получают наряду с металлами и другие продукты. Так, например, одновременно с Cu, Zn, Ni при переработке сульфидных руд получают и H 2 SO 4 .

Нерудное сырьё – это горные породы, используемые в производстве неметаллических ма­териалов (кроме хлоридов щелочных металлов и Mg). Этот вид сырья или непосредст­венно используется в народном хозяйстве (без химической переработки) или служит для того или иного химического производства. Это сырьё используют в производстве удобре­ний, солей, кислот, щелочей, цемента, стекла, керамики и т.д.

Нерудное сырьё условно делят на следующие группы:

  • строительные материалы – сырьё используется непосредственно или после механиче­ской или физико-химической отработки (гравий, песок, глина и т.д.)
  • индустриальное сырьё – используется в производстве без обработки (графит, слюда, корунд)
  • химическое минеральное сырьё – используют непосредственно после химической об­работки (сера, селитра, фосфорит, апатит, сильвинит, каменная и другие соли)
  • драгоценное, полудрагоценное и поделочное сырьё (алмаз, изумруд, рубин, мала­хит, яшма, мрамор и т.д.)

Горючее минеральное сырьё – ископаемые, которые могут служить в качестве топ­лива (угли, нефть, газ, горючие сланцы и др.)

2. Растительное и животное сырьё – это продукты сельского (земледелия, животноводства, овощеводства), а также мясного и рыбного хозяйства.

По своему назначению оно подразделяется на пищевое и техническое. К пищевому сырью относятся картофель, сахарная свекла, хлебные злаки и т.д. Химическая и другие отрасли промышленности потребляют растительное и животное сырьё, непригодное для пищи (хлопок, солома, лён, китовый жир, когти и т.д.). Деление сырья на пищевое и техниче­ское в некоторых случаях условно (картофель → спирт).

3. Воздух и вода являются самым дешёвым и доступным сырьём. Воздух – практически неисчерпаемый источник N 2 и O 2. H 2 O не только непосредственный источник H 2 и O 2 , но и участвует практически во всех химических процессах, а также используется как раство­ритель.

Экономический потенциал любой страны в современных условиях в большей сте­пени определяется природными ресурсами полезных ископаемых, масштабами и качест­венной характеристикой их местоположений, а также уровнем развития сырьевых отрас­лей промышленности.

Сырьевые ресурсы современной промышленности очень разнообразны, причем с развитием новой техники, внедрением более эффективных методов производства сырье­вая база постоянно расширяется за счёт открытия новых месторождений, освоения новых видов сырья и более полного использования всех его компонентов.

Отечественная промышленность имеет мощную сырьевую базу и располагает запа­сами всех необходимых ей видов минерального и органического сырья. В настоящее время США занимает первое место в мире по добыче запасов P, каменных солей, NaCl, Na 2 SO 4 , асбеста, торфа, древесины и т.д. У нас одна из первых мест по разведанным зале­жам нефти и газа. И разведанные запасы сырья из года в год увеличиваются.

На современном этапе развития промышленности большое значение приобретает ра­циональное использование сырья, которое предполагает следующие мероприятия. Рацио­нальное использование сырья позволяет повысить экологическую эффективность произ­водства, т.к. стоимость сырья составляет основную долю в себестоимости химической продукции. В связи с этим стремятся использовать более дешёвое, особенно местное сы­рьё. Например, в настоящее время в качестве углеводородного сырья всё шире исполь­зуют нефть и газ, а не каменный уголь, этиловый спирт, полученный из пищевого сырья заменяют на гидролизный из древесины.

Описание:

Системы приточно-вытяжной вентиляции для административных и жилых помещений эффективны не только с санитарно-гигиенической точки зрения. При наличии автоматической утилизации тепла, они также вносят существенный вклад в снижение затрат на отопление. Воздух, удаляемый из помещения, имеет температуру 20-24 0 С. Не использовать это тепло - значит, в буквальном смысле, выпускать его в форточку. Тепло удаляемого воздуха можно использовать для подогрева воды и приточного воздуха и, тем самым, внести свой вклад в защиту окружающей среды.

Утилизация тепла

Д. Дросте , ИнноТек Системанализ ГмбХ, Берлин (Германия)

Технология

Основные положения

Системы приточно-вытяжной вентиляции для административных и жилых помещений эффективны не только с санитарно-гигиенической точки зрения. При наличии автоматической утилизации тепла, они также вносят существенный вклад в снижение затрат на отопление. Воздух, удаляемый из помещения, имеет температуру 20-24 o С. Не использовать это тепло - значит, в буквальном смысле, выпускать его в форточку. Тепло удаляемого воздуха можно использовать для подогрева воды и приточного воздуха и, тем самым, внести свой вклад в защиту окружающей среды.

Таким образом, утилизация тепла необходима для снижения потерь при вентиляции.

Технические решения

В вентиляционных системах зданий заданное количество удаляемого воздуха забирается из помещений с высоким содержанием влаги и загрязнений: кухни, туалета, ванной комнаты, - затем охлаждается в перекрестноточном пластинчатом теплообменнике и выбрасывается наружу. Такое же количество предварительно очищенного от пыли наружного приточного воздуха нагревается в теплообменнике без контакта с удаляемым воздухом и подается в жилые помещения, спальные и детские комнаты. Соответствующие устройства располагаются на чердаках, в подвалах или во вспомогательных помещениях.

В системах автоматической приточной вентиляции заданное количество воздуха с помощью вентиляторов подается в помещение непрерывно. Вытяжные вентиляторы отбирают загрязненный воздух из кухонь, туалетов и т.д.

При правильном подборе вентиляторов обеспечивается воздухообмен, соответствующий требованиям Федерального правительства. Для обеспечения утилизации тепла в систему включены специальные теплообменники, например, перекрестноточные, при необходимости снабженные тепловым насосом.

Современные установки в домах с хорошей теплоизоляцией, по сравнению с конвективной системой отопления, позволяют экономить до 50% тепла.

Эффективность передачи тепла от удаляемого воздуха к приточному составляет в пластинчатых теплообменниках около 60%, при влажном удаляемом воздухе даже больше. Это означает, что в квартире жилой площадью 100 м 2:

Мощность системы отопления ниже на 10 Вт/м 2 жилой площади;

Годовое потребление тепла снижается примерно с 40 до 15 кВт/м 2 ·год.

Экономическая эффективность

Управляемая система вентиляции и утилизации тепла требует энергетических затрат на подогрев воздуха меньше, чем другие системы. При этом, благодаря снижению установочной мощности системы отопления, при новом строительстве снижаются инвестиционные затраты. Дополнительно, за счет использования систем утилизации тепла, снижаются затраты на топливо, так как используются бытовые тепловыделения (имеются в виду тепловые выделения человека, электрических приборов, освещения, а также инсоляция и т.д.). Бытовые тепловыделения вместо того, чтобы "перегревать" помещение, в котором они возникают, перераспределяются по системе воздуховодов в те помещения, где есть "недогрев". Также следует иметь в виду, что во многих квартирах длительное проветривание через открытые окна часто нежелательно из-за высокого уровня шума. Использование в системе механической вентиляции установок утилизации тепла и тепловых насосов делает ее более энергоэкономичной.

Внедрение

Экономические предпосылки внедрения современных отопительных систем достаточно многообразны. В ряде федеральных земель существуют специальные налоговые льготы, благодаря которым первоначальные затраты можно снизить на 20-30%. Кроме того, ряд программ энергосбережения содержит разделы, посвященные вентиляции жилых помещений. Так, например, в программе земли Рейн-Пфальц предусмотрена доплата до 25%, но не более 7500 DМ. Особенно рекомендуется внедрение тепловых насосов, при этом в некоторых землях предусматривается доплата до 30%.

Примеры использования

Утилизация тепла в многоквартирном доме

В типичном многоквартирном доме в Лейпциге 1912 года постройки, который был реконструирован и дополнительно теплоизолирован, голландская вентиляционная фирма Van Ophoven использовала управляемую систему вентиляции с утилизацией тепла. Дома такого типа составляют до 60% жилого фонда Лейпцига. Система приточно-вытяжной вентиляции с утилизацией тепла в перекрестноточном теплообменнике автономна до момента включения дополнительного подогревателя приточного воздуха. Для обеспечения утилизации тепла в систему включены специальные теплообменники, в нашем примере - перекрестноточные. Речь идет в данном случае о равновесной системе вентиляции. Каждая квартира оборудована прибором, установленном на стене в специально отведенном месте. Наружный воздух предварительно нагревается в утилизационном устройстве, а затем с помощью дополнительного подогревателя нагревается до необходимой температуры. В данном случае речь идет о непрямом отоплении. Анализ эффективности этой системы показал, что экономия энергии составляет 40%, а выбросы СО 2 снизились на 69%.

Воздухообменные установки

Во многих административных зданиях в Носсене, в офисах, больницах, банках благоприятный микроклимат обеспечивают энергоэкономичные воздухообменные установки с утилизацией тепла. Эффективность утилизации тепла в противоточных теплообменниках может достигать 60%. На приведенном здесь снимке видно, что воздухообменные установки хорошо вписываются в обстановку помещения.

Литература

1. Arbeitskreis der Dozenten fur Klimatechnik: Handbuch der Klimatechnik, Verlag C.F. Muller GmbH, Karlsruhe

2. Recknagel/Sprenger: Taschenbuchfur Heizung + Klimatechnik, R. Oldenburg Verlag, Munchen/Wien 83/84

3. Ministerium fur Banuen und Wohnen des Landes Nordrhein-Westfalen: Luftung im Wohngebaude

4. THERMIE-Maxibroschure: Leitfaden energiesparende und emissionsarme Anlagen zur Heizung, Kuhlung und Klimatisierung von kleinen und mittleren Unternehmen in den neuen Bundeslandern, erhaltlich under OPET.

Во всем мире и прежде всего в странах Западной Европы и США широко применяются технические решения, позволяющие снизить стоимость жизненного цикла холодильной установки. Это и применение электронных расширительных вентилей, и оптимизация давления конденсации в зависимости от температуры наружного воздуха, и установка давления всасывания холодильной машины в зависимости от нагрузки на нее, и управление компрессорами и вентиляторами конденсатора с помощью преобразователей частоты, позволяющих существенно уменьшить потребление энергии. В России активное внедрение подобных решений долгое время сдерживалось из-за заметно более низких, чем на Западе, цен на энергоносители, не позволявших окупить дополнительные капиталовложения в относительно короткий срок. Однако в последние годы технологии энергосбережения становятся все более и более актуальными и в нашей стране.

Системы утилизации тепла конденсации холодильной машины стоят особняком от перечисленных выше решений, поскольку позволяют экономить не электроэнергию, потребляемую непосредственно системой холодоснабжения, а дают возможность снизить затраты других систем, используемых на объекте.

Если рассматривать термодинамику цикла, то можно увидеть, что есть две основные возможности снять теплоту. Первая — использовать перегрев сжатого в компрессоре газа. Вторая — утилизировать теплоту конденсации хладагента.

При использовании перегрева сжатого газа в холодильном контуре устанавливается дополнительный теплообменник. В этом случае можно утилизировать до 20% всего тепла, сбрасываемого установкой. Так как температура хладагента в конце процесса сжатия может превышать 100 °C, среда (воздух или вода) нагревается до 80-90 °C.

При утилизации теплоты конденсации можно снять намного больше тепла, но тепла низкопотенциального, позволяющего нагреть воду или воздух лишь до 30 градусов.

Для чего может быть использовано утилизированное тепло? Наиболее очевидное применение — воздушное отопление зимой. В простейшем варианте установка имеет два параллельно установленных конденсатора, один — на улице (он работает в теплое время года), а второй — внутри помещения (он подогревает воздух в холода). В недорогом исполнении такое решение не имеет никакой регулирующей автоматики. Перевод из зимнего режима в летний производится вручную отключением соответствующего конденсатора, при помощи запорных клапанов. Более сложные варианты имеют один конденсатор, установленный в помещении, и систему, направляющую поток воздуха либо на улицу, либо внутрь помещения. Управление распределением потока может быть как ручным, так и автоматическим.

В настоящее время набирает популярность применение утилизированного тепла для подогрева воды, идущей на различные технические нужды.

Как правило, и для отопления, и для нагрева воды используют перегрев сжатого газа, так как температуры, которую можно получить при утилизации тепла конденсации хладагента, недостаточно. Использование перегрева газа позволяет нагреть воду до 40-50 °C и выше. В случае когда холодильная машина не обеспечивает нужной производительности или же не может работать постоянно, а емкости бака-аккумулятора для поддержания температуры недостаточно, применяют электрические нагреватели или газовые бойлеры.

Интересной разновидностью подобных систем являются каскадные установки с высокотемпературным тепловым насосом в качестве верхнего контура, который подогревает воду до 65-80 °C. Такая вода может использоваться для санитарной обработки поверхностей (при этой температуре погибает большинство бактерий), в химическом производстве. При большой потребности в горячей воде для промышленных нужд целесообразно применение систем с транскритическим циклом на СО 2 . Они менее эффективны по сравнению с традиционными, но позволяют нагревать воду до более высокой температуры.

Для применения систем утилизации тепла желательно, чтобы графики работы холодильной машины и потребности в горячей воде по возможности совпадали. Поэтому наиболее целесообразно использовать эти системы там, где холод вырабатывается постоянно. Например, на предприятиях пищевой промышленности, где горячая вода необходима для мойки помещений. Интересным представляется применение систем подобного рода на ледовых катках. Горячая вода здесь может использоваться для защиты грунта под охлаждаемой плитой от замерзания, а также для различных технологических нужд. Оценке экономической эффективности применения систем утилизации на промышленных предприятиях была посвящена статья в журнале «Мир климата» № 52.

Все больший интерес к подобным системам проявляют магазины и торговые сети. Еще бы — при относительно небольших дополнительных капитальных затратах системы рекуперации тепла позволяют обеспечить горячей водой целый супермаркет!

Интересен американский опыт использования теплоты перегрева конденсаторов молокоохладителей на фермах. Принципиальная схема установки показана на рис. 1. Вода, поступающая из водопровода, нагревается горячим газом и поступает в подогреватель, где ее температура увеличивается до требуемого значения. Эксплуатация таких установок в течение года позволила в три раза снизить расход энергии на нагрев воды. Особо заметный экономический эффект был получен там, где подогрев осуществлялся жидким топливом.

Следует отметить, что система утилизации тепла может быть установлена и на уже действующей холодильной машине. Так, канадская служба по вопросам энергетической эффективности The Office of Energy Efficiency (OEE ) опубликовала отчет о модернизации системы холодоснабжения кухни одного из крупных медицинских центров Канады. Линии нагнетания всех 10 компрессоров объединили в одну и установили на ней пластинчато-паяный теплообменник, в котором вода подогревалась с 10°C до 30°C и направлялась в газовый бойлер, где доводилась до необходимой температуры. Благодаря применению утилизации годовое потребление газа снизилось на 40%, срок окупаемости системы составил 2,3 года. В нашей стране успешный опыт модернизации действующей установки был осуществлен компанией «Простор-Л» на ледовой арене «Локомотив» в Ярославле. Система утилизации тепла, вырабатывающая горячую воду для технологических нужд, была установлена спустя полтора года после сдачи объекта в эксплуатацию. Благодаря ее применению расход горячей воды из городской сети сократился в десять раз, а сама система окупилась менее чем за два года.

Важно отметить, что системы утилизации тепла обычно выполняются по индивидуальным проектам под конкретную задачу. Крайне важно правильно подобрать все компоненты системы и без ошибок ее спроектировать. Теплообменник-утилизатор, как правило, имеет пластинчатую конструкцию, хотя на больших установках применяются и кожухо-трубные теплообменники. Если в конструкции предусмотрено наличие предконденсатора, необходим его точный подбор с целью недопущения конденсации хладагента. При использовании одновременно нескольких источников тепла, например, средне- и низкотемпературных центральных холодильных машин, важно предусмотреть такую их компоновку в машинном отделении, которая позволит обеспечить удобную прокладку трубопроводов для горячей воды и доступ к системам автоматики и запорной арматуре.

В качестве примера использования утилизации тепла в промышленности рассмотрим систему, которую применил один из лидеров холодильного бизнеса — компания ООО «Термокул» (г. Москва) (рис. 2). Горячая вода вырабатывается системой холодоснабжения камеры шоковой заморозки. Вода, получаемая в результате нагрева, используется для размораживания мяса, оттаивания камеры шоковой заморозки и мытья полов после завершения смены. Ее можно использовать и для других нужд. В данной системе на линии нагнетания перед основным конденсатором смонтирован предконденсатор (рис. 3), представляющий собой пластинчато-паяный теплообменник фирмы «Данфосс». Суммарное тепло перегрева горячего газа, выделяемое системой холодоснабжения на базе трех винтовых компрессоров Bitzer HSN 8571, составляет 450 кВт. Предконденсатор позволяет утилизировать до 400 кВт тепла. Вода, имеющая температуру 8 °C, нагревается до 40 °C с производительностью 11 кубометров в час, что позволяет полностью удовлетворить все технологические потребности. Для компенсации снижения производительности при отключениях компрессоров в системе установлен бак-накопитель объемом 3 кубических метра.

Применение такого технического решения позволяет экономить на электроэнергии и прокладке инженерных коммуникаций, что является очень важным для предприятия.

Статью подготовили Сергей Бучин и Сергей Смагин

  • Холодильные машины и холодильные установки. Пример проектирования холодильных центров
  • «Расчёт теплового баланса, поступления влаги, воздухообмена, построение J- d диаграмм. Мульти зональное кондиционирование. Примеры решений»
  • Проектировщику. Материалы журнала "Мир климата"
    • Основные параметры воздуха, классы фильтров, расчет мощности калорифера, стандарты и нормативные документы, таблица физических величин
    • Отдельные технические решения, оборудование
    • Что такое эллиптическая заглушка и зачем она нужна
  • Влияние действующих температурных нормативов на энергопотребление центров обработки данных Новые методы повышения энергоэффективности систем кондиционирования центров обработки данных Повышение эффективности твердотопливного камина
  • Системы утилизации тепла в холодильных установках
  • Микроклимат винохранилищ и оборудование для его создания Подбор оборудования для специализированных систем подачи наружного воздуха (DOAS) Система вентиляции тоннелей. Оборудование компании TLT-TURBO GmbH Применение оборудования Wesper в комплексе по глубокой переработке нефти предприятия «КИРИШИНЕФТЕОРГСИНТЕЗ» Управление воздухообменном в лабораторных помещениях Комплексное использование систем распределения воздуха в подпольных каналах (UFAD) в сочетании с охлаждающими балками Система вентиляции тоннелей. Выбор схемы вентиляции Расчет воздушно-тепловых завес на основе нового вида представления экспериментальных данных о тепловых и массовых потерях Опыт создания децентрализованной системы вентиляции при реконструкции здания Холодные балки для лабораторий. Использование двойной рекуперации энергии Обеспечение надежности на стадии проектирования Утилизация теплоты, выделяющейся при работе холодильной установки промышленного предприятия Методика аэродинамического расчета воздуховодов Методика подбора сплит-системы от компании DAICHI Новый стандарт проектирования тепловой изоляции Прикладные вопросы классификации помещений по климатическим параметрам Оптимизация управления и структуры систем вентиляции Вариаторы и дренажные помпы от EDC Новое справочное издание от АВОК Новый подход к строительству и эксплуатации систем холодоснабжения зданий с кондиционированием воздуха Ваш выбор... Сопоставление фреоновых кондиционеров по техническим характеристикам Вибрационные характеристики вентиляторов Вентиляция на предприятиях общественного питания Новые приборы для вентиляции помещений с герметичными окнами Автоматика для систем вентиляции и кондиционирования SHUFT Система дистанционного контроля и управления параметрами технологических процессов от компании «Термокул» Бесплатный холод - реальность наших дней

Утилизация теплоты уже много лет широко применяется в тепло-энергетик е — подогреватели питательной воды, экономайзеры, воздухо-подогреватели, газотурбинные регенераторы и т. д., но в холодильной технике ей уделяется еще недостаточное внимание. Это можно объяс-нить тем, что обычно сбрасывается теплота низкого потенциала (при тем-пературе ниже 100°С), поэтому для ее использования необходимо вво-дить в холодильную систему дополнительные теплообменники и прибо-ры автоматики, что усложняет ее. При этом холодильная система стано-вится более чувствительной к изменению внешних параметров.

В связи с энергетической проблемой, в настоящее время проекти-ровщики, в том числе и холодильного оборудования , вынуждены более внимательно анализировать традиционные системы в поисках новых схем с регенерацией теплоты конденсации.

Если холодильная установка имеет воздушный конденсатор , можно использовать нагретый воздух непо-средственно после конденсатора для обогрева помещений. Можно полез-но использовать и теплоту перегретых паров хладагента после компрес-сора , имеющих более высокий температурный потенциал.

Впервые схемы утилизации теплоты были разработаны европей-скими фирмами, так как в Европе сложились более высокие цены на электроэнергию в сравнении с ценами в США.

Комплектное холодильное оборудование фирмы ’’Костан” (Ита-лия), разработанное в последние годы, с системой утилизации теплоты воздушных конденсаторов применяется для отопления торгового зала магазинов типа ’’Универсам”. Такие системы позволяют сократить общее энергопотребление в магазине на 20—30%.

Основная цель — использование максимально возможного количе-ства теплоты , выделяемой холодильной машиной в окружающую среду. Теплота передается либо непосредственно потоком теплого воздуха пос-ле конденсатора в торговый зал магазина во время отопительного сезо-на, либо в дополнительный теплообменник-аккумулятор (теплота пере-гретых паров хладагента) для получения теплой воды, которая исполь-зуется для технологических нужд в течение всего года.

Опыт эксплуатации систем по первому способупоказал, что они просты в обслуживании, но сравнительно громоздки, исполь-зование их связано с необходимостью установки дополнительных вен-тиляторов для перемещения большого количества воздуха и воздуш-ных фильтров, что в конечном итоге приводит к росту приведенных затрат. Учитывая это, предпочтение отдают более сложным схемам, несмотря на то, что их реализация усложняет эксплуатацию.

Наиболее простой схемой с теплообменником-аккумулятором — является схема с поcледовательным соединением конденсатора и акку-мулятора. Эта схема работает следующим образом. При тем-пературах воды на входе в теплообменник-аккумулятор и температура окру-жающего воздуха, равных 10°С, температура конденсации tK сос-тавляет 20 С. В течение короткого времени (например, в течение ночи) вода в аккумуляторе нагревается до 50°С, a t повышается до 30°С. Объясняется это тем, что общая производительность конденсатора и аккумулятора понижается, так как при нагреве воды уменьшается первоначальный температурный напор в аккумуляторе.

Повышение на 10°С вполне допустимо, однако при неблагоприятных сочетаниях высокой температуры и малого потребления воды может наблюдаться и более значительное повышение температуры кон-денсации . Эта схема имеет следующие недостатки при эксплуатации: колебания давления конденсации; периодическое значительное пони-жение давления в ресивере, которое приводит к нарушению питания испарителя жидкостью; возможное обратное перетекание жидкости в воздушный конденсатор во время остановки компрессора, когда t значительно ниже температуры в ресивере.

Установка регулятора давления конденсации позво-ляет предотвращать обратное перетекание конденсата из ресивера в воз-душный конденсатор, а также поддерживать необходимое давление конденсации, например, соответствующее 25 °С.

При повышении tw до 50°С и tок до 25 °С регулятор давленияполностью открывается, при этом падение давления в нем не превышает 0,001 МПа.

Если и t снижаются до 10°С, то регулятор давления закрыва-ется и внутренняя полость воздушного конденсатора, а также часть зме-евика теплообменника-аккумулятора заполняются жидкостью. При по-вышении t до 25°С регулятор давления вновь открывается и жидкость из воздушного конденсатора выходит переохлажденной. Давление над поверхностью жидкости в ресивере будет равно давлению конденсации минус падение давления в регуляторе, причем давление в ресивере мо-жет стать настолько низким (например, соответствовать tK < 15°С), что жидкость перед подачей к регулирующему вентилю не будет переох-лажденной. В этом случае необходимо ввести в схему регенеративный теплообменник.

Для поддержания давления в ресивере в схему также вводится диф-ференциальный клапан. При tк= 20°С и tок — 40°С диф-ференциальный клапан закрыт, падение давления в трубопроводах воздушного конденсатора, теплообменника-аккумулятора и регулятора давления незначительно.

При понижении до 0°С, a t до 10°С жидкость перед регулятором давления будет иметь температуру примерно 10°С. Падение давления в регуляторе давления станет значительным, откроется дифференци-альный клапан 6 и горячий пар будет поступать в ресивер.

Однако и это полностью не исключает проблемы отсутствия пере-охлаждения жидкости в ресивере. Необходимы обязательная установка регенеративного теплообменника либо использование ресивера специ-альной конструкции. В этом случае холодная жидкость из конденсатора направляется непосредственно в жидкостный трубопровод. Такого же эффекта можно достигнуть установкой вертикального реси-вера, в котором более холодная жидкость опускается на дно, а горячий пар поступает в верхнюю часть.

Расположение регулятора давления в схеме между теплообменни-ком-аккумулятором и воздушным конденсатором. предпочти-тельно по следующим причинам: зимой может потребоваться много вре-мени на достижение необходимого давления конденсации; в компрес-сорно-конденсаторном агрегате редко бывает достаточной длина трубо-провода между конденсатором и ресивером; в существующих установках необходимо отключать сливной трубопровод, чтобы встроить теп-лообменник-аккумулятор. По этой схеме устанавливается и обратный клапан.

Разработаны схемы с параллельным соединением воздушных конденсаторов для поддержания в одном помещении температуры 20°С, а в другом, где часто открываются зимой двери, — 10°С. Такие схемы также требуют установки регуляторов давления и дифференциальных клапанов.

Параллельно включенные конденсаторы с утилизацией теплоты в летнее время обычно не работают, и давление в них несколько ниже, чем в основном конденсаторе. Вследствие неплотного закрытия соленоид-ных и обратных клапанов возможны рециркуляция жидкости и заполне-ние конденсатора-утилизатора. Во избежание этого в схеме предусмат-ривают байпасный трубопровод, через который периоди-чески включается конденсатор с утилизацией теплоты по сигналу реле времени.

Колебания тепловой нагрузки основного конденсатора и конден-саторов с утилизацией теплоты связаны с необходимостью использова-ния в таких схемах ресивера большей вместимости, чем в холодильных машинах без утилизации теплоты, либо установки дополнительного ресивера параллельно первому, что заставляет увеличивать количество хладагента для заправки системы.

Анализ различных схем утилизации теплоты с использова-нием стандартных теплообменников коаксиального типа (труба в трубе) при полной конденсации в них и использовании лишь теплоты перегре-ва паров показывает, что установка работает экономичнее при полной конденсации в регенераторе теплоты лишь при непрерывном и стабиль-ном использовании теплой воды.

Холодильная машина работает по двум цик-лам (с температурой кипения — 10°С и разными температурами конден-сации 35 и 55°С). В качестве регенератора теплоты используется допол-нительный противоточный водяной теплообменник, передающий тепло-ту перегрева паров хладагента при температурном напоре холодопроизводительности компрессора 10 кВт и потребляемой мощ-ности 2,1 кВт (Тк = 35°С) в основном конденсаторе можно нагреть воду (при расходе ее 0,012 кг/с) с 10 до 30°С, а затем в регенераторе по-высить температуру воды с 30 до 65 °С. В цикле с 55°С при холодопроизводительности 10 кВт и по-требляемой мощности 3,5 кВт в основном конденсаторе воды (при расходе 0,05 кг/с) нагревается с 10 до 50°С, и затем в дополнительном теплообменнике-регенераторе вода (при расходе 0,017 кг/с) нагрева-ется с 50 до 91°С. В первом случае полезно используется 13,7%, во вто-ром - 52% всей подводимой энергии.

Во всех случаях при выборе системы утилизации теплоты холо-дильной машины необходимо определить следующее:

  • холодопроизводительность компрессора и тепловую нагрузку на конденсатор;
  • режим работы холодильной машины в летний и зимний периоды; возможность использования утилизированной теплоты; взаимосвязь между необходимой теплотой для обогрева помещения и нагрева воды;
  • требуемую температуру теплой воды и расход ее по времени; надежность работы холодильной машины в режиме получения холода.
  • Опыт эксплуатации систем утилизации теплоты показывает, что первоначальные капитальные затраты на такую систему в крупных магазинах окупаются в течение 5 лет, поэтому внедрение их экономически целесообразно.

Похожие публикации