Экспертное сообщество по ремонту ванных комнат

Ученые которые изучали головной мозг человека. Женский мозг - о мозге

ВВЕДЕНИЕ

Некоторые из современных наук имеют вполне законченный вид, другие интенсивно развиваются или только становятся. Это вполне понятно, так как наука эволюционирует, как и природа, которую она изучает. Одной из перспективных областей естествознания является изучение человеческого мозга и связи психических процессов с физиологическими.

При рождении мозг является самым недифференцированным органом тела. Важно знать, что мозг не функционирует «правильным образом» до тех пор, пока его развитие не «завершилось». Однако мозг никогда не становится «завершенным», так как он продолжает реинтегрировать себя. Пластичность мозга, то есть его чувствительность к влиянию окружающей среды, является характеристикой, в особенности присущей человеческому мозгу.

Изучение высшей нервной деятельности возможно физическими, химическими методами, гипнозом и т. п. Среди тем, интересных с естественнонаучной точки зрения можно выделить:

1) непосредственное воздействие на мозговые центры;

2) опыты с наркотиками (ЛСД, в особенности);

3) кодирование поведения на расстоянии.

Целью моей работы является изучение основных вопросов развития мозга, а также рассмотрение основных психических свойств человека.

Для выполнения работы выделяются следующие задачи:

- Рассмотрение развития мозга человека;

- Изучение психических свойств человека (темперамент, способности, мотивации, характер).

Для написания работы были изучены и проанализированы различные учебные источники. Предпочтение отдавалось следующим авторам: Горелову А.А., Грушевицкой Т.Г., Садохину А.П., Успенскому П.Д., Маклакову А.Г.

Развитие мозга человека

Головной мозг - это та часть нервной системы, которая эволюционно возникла на основе развития дистантных рецепторных органов.

Цель изучения мозга - понять механизмы поведения и научиться ими управлять. Знания о процессах, происходящих в мозгу, необходимы для лучшего использования умственных способностей и достижения психологического комфорта.

Что же знает естествознание о деятельности мозга? Еще в прошлом веке выдающийся русский физиолог Сеченов писал, что физиология располагает данными о родстве психических явлений с нервными процессами в теле. Благодаря Павлову, физиологическому изучению головного мозга стало доступно все, включая сознание и память. Горелов А.А. Концепции современного естествознания: Курс лекций.,М.: Центр, 1998. - с. 156.

Мозг рассматривается как центр управления, состоящий из нейронов, проводящих путей и синапсов (в мозгу человека 10 связанных между собой нейронов).

Исследование мозга

Кора головного мозга и подкорковых структур связана с внешними психическими функциями, с мышлением и сознанием человека. Именно через нервы, выходящие из головного и спинного мозга, связана центральная нервная система со всеми органами и тканями. Нервы несут информацию, поступающую из внешней среды в мозг, и приводят ее в обратном направлении к частям и органам.

Ныне существуют технические возможности экспериментального исследования мозга. На это нацелен метод электрического раздражения, посредством которого изучаются отделы мозга, ответственные за память, решение задач, распознавание образов и т. п., причем воздействие может быть дистанционным. Можно искусственно вызывать мысли и эмоции - вражды, страха, тревоги, наслаждения, иллюзию узнавания, галлюцинации, навязчивые идеи. Современная техника может в буквальном смысле сделать человека счастливым, воздействуя непосредственно на центры удовольствия в мозгу.

Исследования показали, что:

1) Ни один поведенческий акт невозможен без возникновения на клеточном уровне отрицательных потенциалов, которые сопровождаются электрическими и химическими изменениями и деполяризацией мембраны;

2) Процессы в мозгу могут быть двух видов: возбуждающие и тормозящие;

3) Память подобна звеньям цепи и можно, потянув за одну, вытянуть очень много;

4) Так называемая психическая энергия представляет собой сумму физиологической активности мозга и получаемой извне информации;

5) Роль воли сводится к тому, чтобы привести в действие уже сложившиеся механизмы.

Особую роль в головном мозге играют левое и правое полушарие, а также их основные доли: лобная, теменная, затылочная и височная. И.П. Павловым впервые введено понятие анализатора на основе комплекса мозговых и других органических структур, участвующих в восприятии, переработке и хранении информации. Он выделил относительно автономную органическую систему, которая обеспечивает переработку специфической информации на всех уровнях ее прохождения через центральную нервную систему. Маклаков А.Г. Общая психология: СПб.: Питер 2002.- с. 38.

К достижениям нейрофизиологии можно отнести и обнаружение асимметрии в функционировании головного мозга. Профессор Калифорнийского технологического института Р. Сперри в начале 50-х годов доказал функциональное различие полушарий мозга при почти полной идентичности анатомии. Горелов А.А. Концепции современного естествознания: Курс лекций.. - М.: Центр, 1998. - с. 157.

Левое полушарие - аналитическое, рациональное, последовательно действующее, более агрессивное, активное, ведущее, управляющее двигательной системой.

Правое - синтетическое, целостное, интуитивное; не может выразить себя в речи, но управляет зрением и распознаванием форм. Павлов говорил, что всех людей можно разделить на художников и мыслителей. У первых, стало быть, доминирует правое, у вторых - левое полушарие.

Более ясное представление о механизмах центральной нервной системы позволяет решать проблему стресса. Стресс - понятие, характеризующее, по Г. Селье, скорость изнашивания человеческого организма, и связан с деятельностью неспецифического защитного механизма, увеличивающего сопротивляемость к внешним факторам.

Синдром стресса проходит три стадии:

1) «реакция тревоги», во время которой мобилизуются защитные силы;

2) «стадия устойчивости», отражающая полную адаптацию к стрессору;

«стадия истощения», которая неумолимо наступает, когда стрессор оказывается достаточно силен и действует достаточно долгое время, поскольку «адаптационная энергия», или приспособляемость живого существа всегда конечна».

Многое в деятельности мозга остается неясным. Электрическое раздражение двигательной зоны коры головного мозга не способно вызвать точных и ловких движений, присущих человеку, и стало быть существуют более тонкие и сложные механизмы, ответственные за движение. Отсутствует убедительная физико-химическая модель сознания, и стало быть неизвестно, что такое сознание как функциональная сущность и что такое мысль как продукт сознания. Можно лишь заключить, что сознание - результат особой организации, сложность которой создает новые, так называемые эмерджентные свойства, которых нет у составных частей.

Спорен вопрос о начале сознания. Согласно одной из точек зрения, до рождения существует план сознания, а не готовое сознание. «Развитие мозга, - считает X. Дельгадо, - определяет отношение индивидуума к окружающему еще до того, как индивидуум становится способным воспринимать сенсорную информацию об окружающем. Следовательно, инициатива остается за организмом». Горелов А.А. Концепции современного естествознания: Курс лекций.,М.: Центр, 1998. - с. 158.

Существует так называемое «опережающее морфологическое созревание»: еще до рождения в темноте веки поднимаются и опускаются. Но новорожденные лишены сознания и лишь приобретенный опыт ведет к узнаванию предметов.

Реакции новорожденных столь примитивны, что их вряд ли можно рассматривать как признаки сознания. Да и мозга при рождении еще полностью нет. Стало быть, человек по сравнению с другими животными рождается менее развитым и ему требуется определенный постнатальный период роста. Инстинктивная деятельность может существовать даже при отсутствии опыта, психическая - никогда.

Важно отметить, что большое влияние функционирование руки оказало на развитие мозга. У руки как развивающегося специализированного органа должно было формироваться и представительство в головном мозгу. Это послужило причиной не только увеличения массы мозга, но и усложнения его структуры.

Недостаточность сенсорного притока отрицательно влияет на физиологическое развитие ребенка. Способность понимать видимое не является врожденным свойством мозга. Мышление не развивается само по себе. Формирование личности, по Пиаже, заканчивается в три года, но деятельность мозга зависит от сенсорной информации в течение всей жизни. «Животными и людям нужна новизна и непрерывный поток разнообразных раздражителей из внешней среды». Уменьшение поступления сенсорной информации, как показали эксперименты, приводит к возникновению через несколько часов галлюцинаций и бреда.

Вопрос о том, насколько непрерывный сенсорный поток определяет сознание человека, столь же сложен, как и вопрос о соотношении интеллекта и чувств. Еще Спиноза считал, что «человеческая свобода, обладанием которой все хвалятся», не отличается от возможностей камня, который «получает определенное количество движения от какой-нибудь внешней причины». Эту точку зрения пытаются обосновать современные бихевиористы. То, что сознание может резко меняться под влиянием внешних причин (причем и в сторону усиления предвидения и образования новых свойств и способностей), доказывает поведение людей, получивших тяжелые травмы черепа. Косвенное (например, средствами рекламы) и прямое (оперативное) воздействие на сознание приводит к кодированию.

Три направления нейрофизиологии привлекают наибольший интерес:

1) влияние на сознание посредствами раздражения определенных центров мозга с помощью психотропных и иных средств;

2) оперативное и медикаментозное кодирование;

3) изучение необычных свойств сознания и их влияния на социум. Эти важные, но опасные направления исследований зачастую засекречиваются.

Строение мозга

Головной мозг, encephalon (cerebrum), с окружающими его оболочками находится в полости мозгового черепа. Выпуклая верхнелатеральная поверхность головного мозга по форме соответствует внутренней вогнутой поверхности свода черепа. Нижняя поверхность - основание головного мозга, имеет сложный рельеф, соответствующий черепным ямкам внутреннего основания черепа. Анатомия человека: Учебник. / Р.П. Самусев, Ю.М. Селин. - М.: Медицина, 1990. - с. 376.

Масса мозга взрослого человека колеблется от 1100 до 2000 г. На протяжении от 20 до 60 лет масса и объем остаются максимальными и постоянными для каждого данного индивидуума (масса мозга в среднем у мужчин 1394 г, у женщин - 1245 г), а после 60 лет они несколько уменьшаются.

При осмотре препарата головного мозга хорошо заметны три его наиболее крупные составные части. Это парные полушария большого мозга, мозжечок и мозговой ствол.

Полушария большого мозга у взрослого человека - это наиболее сильно развитая, самая крупная и функционально наиболее важная часть ЦНС. Отделы полушарий прикрывают собой все остальные части головного мозга. Правое и левое полушария отделены друг от друга глубокой продольной щелью большого мозга, достигающей большой спайки мозга, или мозолистого тела.

мозг психика темперамент характер

Человек летает в космос и погружается в морские глубины, создал цифровое телевидение и сверхмощные компьютеры. Однако сам механизм мыслительного процесса и орган, в котором происходит умственная деятельность, как и причины, побуждающие нейроны взаимодействовать, до сих пор остаются загадкой.

Головной мозг – важнейший орган человеческого организма, материальный субстрат высшей нервной деятельности. От него зависит, что человек чувствует, делает, о чем думает. Мы слышим не ушами и видим не глазами, а соответствующими участками коры головного мозга. Он же вырабатывает гормоны удовольствия, вызывает прилив сил и утоляет боль. В основе нервной деятельности лежат рефлексы, инстинкты, эмоции и другие психические явления. Научное понимание работы мозга все еще отстает от понимания функционирования всего организма в целом. Это, безусловно, связано с тем, что мозг – гораздо более сложный орган по сравнению с любым другим. Мозг – самый сложный объект в известной нам вселенной.

Справка

У человека отношение массы головного мозга к массе тела в среднем равно 2%. А если поверхность этого органа разгладить, получится примерно 22 кв. метра органики. Мозг содержит около 100 миллиардов нервных клеток (нейронов). Чтобы вы могли представить себе это количество, напомним: 100 миллиардов секунд – это примерно 3 тысячи лет. Каждый нейрон контактирует с 10 тысячами других. И каждый из них способен к высокоскоростной передаче импульсов, поступающих от одной клетки к другой химическим путем. Нейроны могут одновременно взаимодействовать с несколькими другими нейронами, в том числе находящимися в удаленных отделах мозга.

Только факты

  • Мозг – лидер по энергопотреблению в организме. На него работает 15% сердца, и он потребляет около 25% кислорода, захватываемого легкими. Для доставки кислорода к мозгу работают три крупные артерии, которые предназначены для его постоянной подпитки.
  • Около 95% тканей мозга окончательно формируются к 17 годам. К концу пубертатного периода мозг человека составляет полноценный орган.
  • Головной мозг не чувствует боли. В мозге нет болевых рецепторов: зачем они, если разрушение мозга приводит к смерти организма? Дискомфорт может чувствовать оболочка, в которую заключен наш мозг, – так мы испытываем головную боль.
  • У мужчин мозг обычно больше, чем у женщин. Средний вес головного мозга взрослого мужчины – 1375 г, взрослой женщины – 1275 г. Они также различаются размерами различных областей. Однако учеными доказано, что это не имеет отношения к интеллектуальным способностям, а самый большой и тяжелый мозг (2850 г), который описывали исследователи, принадлежал пациенту психиатрической больницы, страдающему идиотизмом.
  • Человек использует практически все ресурсы своего мозга. То, что мозг работает всего на 10%, – миф. Ученые доказали, что имеющиеся резервы мозга человек задействует в критических ситуациях. Например, когда кто-то убегает от злой собаки, он может перепрыгнуть через высокий забор, который в обычных условиях он ни за что не преодолел бы. В экстренный момент в мозг вливаются определенные вещества, которые стимулируют действия того, кто оказался в критической ситуации. По сути, это допинг. Однако проделывать такое постоянно опасно – человек может умереть, потому что исчерпает все свои резервные возможности.
  • Мозг можно целенаправленно развивать, тренировать. Например, полезно заучивать тексты наизусть, решать логические и математические задачи, изучать иностранные языки, познавать новое. Также психологи советуют правшам периодически «главной» рукой делать левую, а левшам – правую.
  • Мозг обладает свойством пластичности. Если поражен один из отделов нашего важнейшего органа, другие через некоторое время смогут компенсировать его утраченную функцию. Именно пластичность мозга играет исключительно важную роль в овладении новыми навыками.
  • Клетки головного мозга восстанавливаются. Синапсы, связывающие нейроны, и сами нервные клетки важнейшего из органов регенерируются, но не так быстро, как клетки других органов. Пример тому – реабилитация людей после черепно-мозговых травм. Ученые обнаружили, что в отделе мозга, отвечающего за обоняние, из клеток-предшественниц образуются зрелые нейроны. В нужный момент они помогают «починить» травмированный мозг. Ежедневно в его коре могут образовываться десятки тысяч новых нейронов, однако впоследствии может прижиться не больше десяти тысяч. Сегодня известны две области активного прироста нейронов: зона памяти и зона, ответственная за движения.
  • Мозг активно работает во время сна. Человеку важно иметь память. Она бывает долгосрочная и краткосрочная. Перевод информации из краткосрочной в долгосрочную память, запоминание, «раскладывание по полочкам», осмысление информации, которую человек получает в течение дня, происходит именно во сне. А чтобы тело не повторяло в реальности движения из сна, мозг выделяет особый гормон.

Мозг способен значительно ускорять свою работу. Люди, пережившие ситуации угрозы для жизни, говорят, что за миг перед их глазами «пролетела вся жизнь». Ученые считают, что мозг в момент опасности и осознания грозящей смерти в сотни раз ускоряет работу: ищет в памяти аналогичные обстоятельства и способ помочь человеку успеть себя спасти.

Всестороннее изучение

Проблема исследования мозга человека – одна из самых захватывающих задач науки. Поставлена цель познать нечто, равное по сложности самому инструменту познания. Ведь все, что до сих пор исследовалось: и атом, и галактика, и мозг животного – было проще мозга человека. С философской точки зрения неизвестно, возможно ли в принципе решение этой задачи. Ведь главное средство познания не приборы и не методы, им остается наш человеческий мозг.

Существуют различные методы исследования. В первую очередь в практику ввели клинико-анатомическое сопоставление – смотрели, какая функция «выпадает» при повреждении определенной области мозга. Так, французский ученый Поль Брока 150 лет назад обнаружил центр речи. Он заметил, что у всех больных, которые не могут говорить, поражена определенная область мозга. Электроэнцефалография изучает электрические свойства мозга – исследователи смотрят, как электрическая активность разных участков мозга меняется в соответствии с тем, что делает человек.

Электрофизиологи регистрируют электрическую активность «мыслительного центра» организма с помощью электродов, позволяющих записывать разряды отдельных нейронов, или с помощью электроэнцефалографии. При тяжелейших заболеваниях мозга тонкие электроды могут вживляться в ткань органа. Это позволило получить важную информацию о механизмах работы мозга по обеспечению высших видов деятельности, были получены данные о соотношении коры и подкорки, о компенсаторных возможностях. Еще один метод изучения мозговых функций – электрическая стимуляция отдельных областей. Так канадским нейрохирургом Уайлдером Пенфилдом был исследован «моторный гомункулус». Было показано, что, стимулируя определенные точки в моторной коре, можно вызвать движение разных частей тела, и установлено представительство различных мышц и органов. В 1970-е годы, после изобретения компьютеров, представилась возможность еще более полно исследовать внутренний мир нервной клетки, появились новые методы интроскопии: магнитоэнцефалография, функциональная магниторезонансная томография и позитронно-эмиссионная томография. В последние десятилетия активно развивается метод нейровизуализации (наблюдение за реакцией отдельных частей мозга после введения определенных веществ).

Детектор ошибок

Очень важное открытие было сделано в 1968 году – ученые обнаружили детектор ошибок. Это механизм, который дает нам возможность производить рутинные действия, не задумываясь: например, умываться, одеваться и одновременно думать о своих делах. Детектор ошибок в подобных обстоятельствах все время следит, правильно ли вы действуете. Или, например, человек внезапно начинает чувствовать себя некомфортно – он возвращается домой и обнаруживает, что забыл выключить газ. Детектор ошибок позволяет нам даже не задумываться о десятках задач и решать их «на автомате», сходу отметая недопустимые варианты действий. За последние десятилетия наука узнала, как устроены многие внутренние механизмы человеческого организма. Например, путь, по которому зрительный сигнал доходит от сетчатки до мозга. Для решения более сложной задачи – мышления, опознания сигнала – задействована большая система, которая распространена по всему мозгу. Однако «центр управления» пока не найден и даже неизвестно, есть ли он.

Гениальный мозг

С середины XIX века ученые делали попытки изучения анатомических особенностей мозга людей с выдающимися способностями. На многих медицинских факультетах Европы хранились соответствующие препараты, в том числе и профессоров медицины, которые еще при жизни завещали свой мозг науке. От них не отставали русские ученые. В 1867 году на Всероссийской этнографической выставке, устроенной Императорским обществом любителей естествознания, было представлено 500 черепов и препаратов их содержимого. В 1887 году анатом Дмитрий Зернов опубликовал результаты исследования мозга легендарного генерала Михаила Скобелева. В 1908 году академик Владимир Бехтерев и профессор Рихард Вейнберг исследовали подобные препараты покойного Дмитрия Менделеева. Аналогичные препараты органов Бородина, Рубинштейна, математика Пафнутия Чебышева сохранены в анатомическом музее Военно-медицинской академии в Санкт-Петербурге. В 1915 году нейрохирург Борис Смирнов подробно описал мозг химика Николая Зинина, патолога Виктора Пашутина и писателя Михаила Салтыкова-Щедрина. В Париже был исследован мозг Ивана Тургенева, вес которого достигал рекордных 2012 г. В Стокгольме работали с соответствующими препаратами знаменитых ученых, в том числе Софьи Ковалевской. Специалисты Московского института мозга тщательно исследовали «мыслительные центры» вождей пролетариата: Ленина и Сталина, Кирова и Калинина, изучали извилины великого тенора Леонида Собинова, писателя Максима Горького, поэта Владимира Маяковского, режиссера Сергея Эйзенштейна... Сегодня ученые убеждены в том, что, на первый взгляд, мозг талантливых людей ничем не выделяется из ряда среднестатистических. Эти органы различаются структурой, размерами, формой, однако от этого ничего не зависит. Мы до сих пор не знаем, что именно делает человека талантливым. Можем только предполагать, что мозг таких людей немножко «сломан». Он может делать то, чего не могут нормальные, а значит, он не такой, как все.

В XXI веке перед учеными стоит, возможно, самая сложная задача за всю историю существования науки: понять мозг. Наш век уже окрестили веком наук о мозге и сознании по аналогии с тем, как прошлый век называли веком генетики. Задача невероятно сложная хотя бы потому, что обычно инструмент, с помощью которого проводят исследования, сложнее объекта исследования. Сейчас же с помощью разума мы пытаемся понять сам разум. Удастся ли?

Что такое мозг, для чего он нам нужен?

Мозг - это наиболее сложный и наименее изученный орган нашего тела. Имея массу всего 1–2 кг (среднестатистический вес где-то посередине), он потребляет 20% энергии, вырабатываемой нашим телом. В его клетках активно работают более 70% генов нашего генома (в других клетках эта цифра гораздо меньше). Серое вещество состоит более чем из 90 млрд нейронов, каждый из которых имеет до 10 тыс. связей с другими нейронами (не обязательно соседними - например, отростки двигательных нейронов имеют длину более метра).

Но все это биология, не так интересно. А как быть с сознанием?

Этим вопросом еще с античных времен занималась только философия. Платон и Аристотель считали, что разум существует как отдельная от материи онтологическая реальность. Парменид, напротив, утверждал, что бытие и мышление едины. Сейчас к этому процессу подключились естественные науки.

За последние годы исследования достигли уровня, на котором мы можем позволить себе приступить к изучению мозга в действии. Оно охватывает молекулы, клетки, их связи, а также высшую материю - поведение, которое и есть сознание.

Фантасты уже давно мечтают об искусственном разуме, но чаще всего рисуют его в виде вышедшего из под контроля монстра, действующего отнюдь не на благо человечества (фантастические фильмы «Терминатор», «На крючке», «Я, робот»).

В одном из недавних фильмов, «Превосходство», для создания искусственного интеллекта была использована речевая модель и специальные алгоритмы ее обработки. Такие идеи небеспочвенны. Считается, что именно речевая модель способствует активному развитию полушарий, и она ответственна за нашу способность к обучению и прогнозированию событий и, в конечном итоге, за принятие решений.

Действительно - опираясь на имеющийся опыт, мы принимаем решения о поступках, а после их совершения сравниваем предполагаемый результат с действительным. Так что мозг дает нам возможность заглянуть в будущее.

Восставший искусственный интеллект - тема не одного фантастического романа и фильма

Но как заставить мыслить машину?

Камнем преткновения любого искусственного интеллекта являются именно алгоритмы его обучения. Преимущество людей над всеми остальными обитателями нашей планеты - умение абстрактно мыслить, строить обобщения различного уровня. Сейчас разработка так называемых алгоритмов «глубинного обучения» - весьма востребованная область знаний. Такими алгоритмами активно интересуются крупные IT-компании. Например, Google недавно приобрела компанию DeepMind Technologies, специализирующуюся как раз на таких задачах. Ведь рынок здесь огромен. Они могут использоваться для распознавания речи, лиц, разработки «умных» пользовательских интерфейсов в электронных устройствах, протезировании и пр. Успехи в этой области уже сейчас приносят свои плоды.

Такие идеи как процессор «Терминатора» Т-800 совершенно новой архитектуры или Скайнет, или создание клонов в «Шестом дне» и «Острове» уже не кажутся несбыточными.

Исследования продолжаются. На изучение мозга тратятся колоссальные средства по всему миру. В 2013–2014 гг. в США, Европе и Японии стартовали масштабные проекты по исследованию мозга (Россия на подходе). Кто знает - может, будущее, о котором пишут фантасты, уже не за горами.

Зачем изучать мозг?

Здоровый мозг человека - невероятно сложная, тонко настроенная система, для нормального функционирования которой важен каждый ее элемент, и это не только нейроны и их сети. Мозг - это еще и множество вспомогательных элементов: глиальные клетки, которые осуществляют питательные и защитные функции для нейронов, клетки сосудистой системы, различные внеклеточные белки, нейромедиаторы. Малейшее изменение работы любого компонента мозга может привести к возникновению и развитию его патологий.

Условно патологии мозга можно разделить на три группы.

Нейродегенеративные заболевания - группа медленно прогрессирующих заболеваний нервной системы, связанных с гибелью нервных клеток, внешне выражающиеся в виде деменции и расстройства двигательных функций (болезни Альцгеймера, Хантингтона и Паркинсона - наиболее известные представители данной группы).

Психические расстройства, связанные с нарушениями в сфере чувств, мышления, поведения. К этой группе относятся депрессия, анорексия, булимия, нарушения сна, алкогольные и наркотические зависимости, шизофрения.

Заболевания, связанные с сосудистой системой.

Все перечисленные заболевания возникают по разным причинам, но на уровне нейронов их проявление всегда одно: нарушается передача нервных импульсов. В зависимости от причины таких нарушений требуется и разное лечение. Но проблема в том, что мы до сих пор не знаем причин этих заболеваний.

Есть теории, предположения, некоторые из них частично подтверждаются, другие - нет. Но в настоящее время все без исключения методы лечения этих заболеваний действуют на симптомы, а не на причины. Так что исследования механизмов возникновения и развития таких болезней в прямом смысле жизненно необходимы, это именно те знания, которых так не хватает, и финансирование таких экспериментов - весьма кстати.

Убить Альцгеймера

Cчиталось, что болезнь Альцгеймера развивается по причине недостатка нейромедиатора ацетилхолина (основной медиатор парасимпатической нервной системы). Тогда придумали лечить болезнь ингибиторами фермента ацетилхолинэстеразы. Фермент находится в месте соединения нейронов и разрушает ацетилхолин, обеспечивая таким образом прерывание нервного импульса. К слову, многие сельскохозяйственные пестициды и боевые отравляющие вещества (зарин, зоман и VX) - сильнейшие ингибиторы этого фермента, они вызывают паралич парасимпатической нервной системы (человек просто перестает дышать). Эффект от терапии был минимальным. Другой теорией было образование амилоидных бляшек, их научились растворять с помощью антител, но этот способ также не давал результата. Есть теория, согласно которой нарушается структура тау-белка, поддерживающего структуру транспортной системы внутри нейрона. Сейчас ее активно проверяют.

Новые подходы к лечению расстройств нервной системы

В настоящее время уже существует множество современных технологий лечения заболеваний, некоторые из которых используются в клинической практике, а другие - только проходят адаптацию. Поскольку многие расстройства центральной нервной системы связаны с неправильной работой генов (наличием в них ошибок, нарушением систем регуляции их работы) молекулярные и клеточные технологии терапии направлены на исправление подобных ошибок.

Идея таких методов проста: используя подходящие средства, мы доставляем терапевтический агент к нужному месту и на нужный уровень клетки, где и происходит коррекция. Уровни - ДНК, РНК, белки, простые вещества. Агентами могут выступать простые вещества (большинство современных лекарственных препаратов), активные белки, ферменты, специфические антитела, фрагменты РНК, даже ДНК. В качестве средств доставки могут использоваться, например, вирусы.

Ниже приведены некоторые примеры таких технологий .

Терапия с использованием миРНК. Молекулы миРНК связываются с матричной РНК (промежуточный элемент на пути синтеза белков, основных действующих элементов нашего организма); такие комплексы распознаются клеточными системами и разрушаются (так можно снизить синтез какого-либо белка в клетке).

Синтетические транскрипционные факторы. Эти вещества связываются с ДНК и активируют процесс синтеза матричной РНК (эти средства, напротив, позволяют повысить продукцию белка).

Синтетические нуклеазы для редактирования генов. Данные методы позволяют напрямую осуществлять коррекцию генома (устраняем дефект и вновь синтезируем компоненты клетки будут работать без нарушений).

Использование антител. Антитела вырабатываются нашим организмом в ответ на появление в нем посторонних веществ - например, вирусов, чужеродных белков. Люди уже давно научились синтезировать искусственные антитела. С их помощью можно устранять различные образования в мозге (пример - устранение амилоидных бляшек при болезни Альцгеймера).

Проблемы с активным применением данных методов связаны с недостатком знаний об объекте лечения. Мозг и центральная нервная система слишком сложны и многокомпонентны, а их патологии чаще всего вызваны несколькими факторами. Исследования в данной области позволят разработать и испытать новые прорывные технологии лечения нейропатологий.

Программы исследований мозга

Мозг как объект исследований интересует научное сообщество уже давно. Колоссальное количество проектов завершено, такое же количество находится в активной фазе или на стадии разработки. Их задачи охватывают весь спектр интересов научного сообщества: это и исследования молекулярных механизмов процессов передачи нервных импульсов, и поиск новых терапевтических средств, инструментов, разработка новых методов исследований, диагностики и лечения патологий, разработка карт разной степени разрешения. Пионерами исследований мозга являются Европейский союз, США и Япония.

Общий недостаток всех инициатив - их разрозненность. До настоящего момента исследования проводились в рамках интересов отдельных научных групп. Сейчас эту ситуацию собираются исправить.

В Европе, США и Японии запущены национальные инициативы по исследованию мозга и сознания. Они частично пересекаются, что может способствовать созданию удачных исследовательских консорциумов и получению наиболее полной информации об объекте исследования. Но главные задачи этих проектов хорошо дополняют друг друга, что позволит научному сообществу получить максимальную выгоду.

Европейские программы

Основным инструментом финансирования научных исследований в Европейском союзе являются Рамочные программы исследований и технологического развития (The Framework Programmes for Research and Technological Development, FP). Программы впервые были введены в 1984 году (FP1). С тех пор объем финансирования научных исследований неуклонно рос, и к 2014 году рост составил более 20 раз. Программа FP8, или „Horizon 2020” предполагает общее финансирование в размере более €80 млрд.


Генри Макрам (Henry Markram) - профессор нейронаук в Швейцарском Федеральном Технологическом Институте (EPFL). Он является основателем Института наук о мозге и сознании, инициатором и руководителем проекта Blue Brain и координатором основной подпрограммы (SP6) проекта Human Brain. Его научные интересы лежат в области синоптической пластичности (способности нейронов образовывать связи друг с другом), структурной организации и функций мозга, а также передачи сигналов в неокортексе (новая кора головного мозга). Он первым сформулировал фундаментальные принципы функционирования этих процессов.

Другим невероятно важным его достижением была разработка концепции «Жидкой машины», или «Машины неустойчивых состояний» (Liquid State Machine, LMS). Это особая сеть нейронов (узлов, если мы говорим о машинах), связанных друг с другом случайным образом. Каждый узел непрерывно получает сигналы от других узлов и/ или внешних источников и сразу же начинает их обрабатывать. На выходе система также выдает непрерывный сигнал. Уникальность такого подхода в том, что в единицу времени машина может содержать важную информацию обо всех прошлых входных сигналах, при этом информационные потоки могут обрабатываться одновременно, совершенно не мешая друг другу.

Эту модель Генри Макрам использовал для симуляции работы нейронных сетей в проекте Blue Brain. Данный проект - пример того, как один человек может изменить мир. Благодаря собственным достижениям и энергии Генри Макраму удалось получить грант на исследования, считавшимися до него неосуществимыми.

Объем финансирования научных исследований в Европе


При этом исследования, связанные с мозгом, в период с 2007 по 2013 гг. получили порядка €2 млрд. Для сравнения, к 2005 году общий объем финансовых вливаний в данную область знаний не превысил €4,1 млрд. Эта сумма включает частные и государственные инвестиции; доля последних при этом едва достигает €900 млн (в США частные и государственные инвестиции за тот же период составили $6,1 и $8,4 млрд соответственно).

Среди многих исследовательских программ, одобренных Европейским союзом, стоит выделить несколько наиболее значимых и/или масштабных проектов. Одним из них является программа Blue Brain.

Blue Brain

В данном проекте были разработаны принципы построения моделей мозга, которые, доказав свою эффективность, впервые заставили научное сообщество поверить в их прогностический потенциал. Эти принципы легли в основу платформы «Симуляция мозга» (SP6) проекта Human Brain (см. далее). Идейным вдохновителем и директором программы стал Генри Макрам (профессор нейронаук в Швейцарском Федеральном Технологическом Институте).

Название проекта произошло от названия суперкомпьютера Blue Gene, предоставленного компанией IBM и используемого для распределенных вычислений, и собственно объекта исследований - мозга (англ. brain).

Моделирование как инструмент исследований давно вошло в научную практику. Например, методы молекулярного докинга активно используются для поиска новых мишеней при разработке лекарственных препаратов.

Результатом проекта Blue Brain стала действующая компьютерная модель, которая способна с высокой вероятностью (около 74%) предсказывать расположение синапсов в коре головного мозга. В своих разработках авторы использовали данные, полученные в ходе собственных биологических экспериментов, а не математические модели (таких к моменту реализации проекта было создано довольно много).

Точный механизм образования синапсов до сих пор неизвестен. Есть две гипотезы: связи между нейронами образуются случайным образом в местах соприкосновения их отростков и связи образуются под контролем химических соединений, выделяемых клетками.

В ходе морфологических экспериментов в проекте Blue Brain (модельным животным была крыса) его авторы выделили шесть типов нейронов и их синоптические связи. Далее, используя всего два параметра (удаленность синапса от тела нейрона и расположение на нем отростков), исследователи выявили схему расположения синапсов, характерную для каждого типа нейронов.

В модельном эксперименте внутри строго определенного объема серого вещества нейроны были расположены случайным образом с учетом всего двух параметров: плотность расположения и относительное количество клеток каждого типа. Почти в 75% случаях модель правильно указала на наличие связей между клетками. Отсюда можно сделать вывод о случайном механизме образования синапсов. Оставшиеся проценты могут свидетельствовать о более сложных молекулярных механизмах, вовлеченных в данный процесс.


Изучение процессов работы памяти человека в Sandia National Laboratories (США) путем снятия электроэнцефалограммы головного мозга

Как бы то ни было, работа показала, что для построения коннектома (модели мозга, пространственного расположения клеток и, главное, связей между ними) достаточно разместить нейроны разных типов в правильных областях коры мозга с подходящей плотностью и в необходимом количестве. Получается, нет необходимости картировать положение каждого нейрона в коре, как считалось ранее, а достаточно иметь лишь общее представление об их расположении.

Именно этот вывод дал начало мероприятиям проекта Human Brain. В январе 2013 года было объявлено о его поддержке Европейским Союзом.

Тем не менее на данный момент мы все еще имеем недостаточно знаний о типах нервных клеток, присутствующих в нашем теле, их различиях на молекулярном уровне. А кроме нейронов, есть еще глиальные клетки и клетки сосудистой системы, без которых нейроны не смогут осуществлять своих функций. И одной из приоритетных задач Human Brain является восполнение недостающих данных, с использованием которых работа модели станет более точной.

Проект «Мозг человека»
(The Human Brain Project, HBP)

Проект «Мозг человека» (номер гранта 604102) стартовал в начале октября 2013 года. Данная инициатива является флагманским проектом в исследованиях мозга Европейской комиссии будущего и новейших технологий в течение ближайших теперь уже 8 лет (окончание проекта запланировано на 2023 год). За это время планируется не только проведение научных исследований, но и активное внедрение полученных результатов в виде методов, новых знаний, технологий в жизнь.

Подпрограммы проекта Human Brain


По словам Генри Маркрама (Henry Markram), профессора, основателя Института мозга и разума, в его рамках ученые намерены воссоздать мозг человека в самых мелких деталях.

«От генетического, молекулярного уровня к нейронам и синапсам, далее к цепям нейронов, макроцепям, мезоцепям, долям мозга - до тех пор, пока не возникнет понимание того, как связаны между собой все эти уровни и как они определяют поведение и формируют сознание», - говорит Маркрам.

Таким образом, глобальной задачей проекта HBP является создание точной модели, которая позволит понять, как работает наш мозг, как мы думаем, принимаем решения, чувствуем. Какие процессы лежат в основе памяти. Ведь четкое представление о том, как работает полтора килограмма биоматериала у нас в голове, потребляя при этом 20% энергии, вырабатываемой всем телом, позволит разработать инструменты для лечения нейродегенеративных заболеваний, которыми все больше страдает стареющее человечество.

Более того: имея такие модели, мы сможем приблизиться к идее создания искусственного разума. Но не все так просто. По словам самого же Генри Маркрама, если сознание появляется в результате критической массы взаимодействий - тогда это может быть возможно, но мы действительно не понимаем, что есть сознание, поэтому трудно об этом говорить. По крайней мере, сейчас.

В проекте участвуют 113 организаций-партнеров, 21 организация-исполнитель, среди которых ведущие университеты мира (всего 24 страны), что делает проект международным. Коммерческие компании, специализирующиеся на изучении патологий мозга, разработке и внедрении в практику новых терапевтических подходов к лечению нейродегенеративных заболеваний, основанных на последних достижениях и разработках науки и техники, также принимают активное участие в данном проекте.

Дорожная карта проекта включает следующие задачи:

Симуляция мозга;

Разработка вычислительных и роботизированных систем;

Разработка интерактивной системы вычислений;

Карта патологий мозга;

Создание карт мозга мыши и человека;

Разработка теорий мозга;

Ускорение революционных исследований;

Коллаборация с другими исследовательскими проектами;

Трансляция результатов Программы в технологии, продукты и сервисы;

Проведение политики ответственных исследований и инноваций.

Инициатива разделена на несколько подпроектов (SP1–SP13), каждый из которых исполняет свою функцию. При этом проекты SP5–SP10 по своим масштабам и значимости имеют статус платформ.

Всего на проект «Мозг человека» планируется потратить порядка €1,2 млрд. Финансирование предварительной фазы проекта, в течение которой происходит адаптация новых методов исследований, установление связей, контактов между организациями-участниками, составляет €54 млн.

В апреле 2015 года на сайте проекта после обобщающей встречи основных участников был опубликован технический отчет о работе, проделанной в течение года с момента начала проекта.

Первый год работы программы стал организационным. Ее участники осваивали, разрабатывали новые методы, совершенствовали инструментарий. В целом, результаты каждой исследовательской группы (конечно, всегда есть исключения) укладываются в установленный календарный план. Общее замечание ко всем участникам следующее: между ними не хватает перекрестных коммуникаций. Причем это единственное замечание существенно влияет на планы реализации всего проекта.


Требуемая производительность компьютерного кластера для реализации проектов по моделированию мозга

И не сосчитать!

Участникам платформы «Высокопроизво-дительные вычисления» (SP7) предстоит нелегкая задача. Дело в том, что для реализации амбициозных целей проекта Human Brain потребуются вычислительные системы колоссальной мощности. Использованный в проекте Blue Brain суперкомпьютер Blue Gene от IBM имел достаточно ресурсов (300 тыс. терафлоп и 10 ТБайт оперативной памяти) для симуляции работы одной колонки неокортекса крысы (структурная единица мозга, всего в мозге крысы 100 тыс. таких колонок). Для симуляции работы человеческого мозга потребуется более чем в 100 тыс. раз мощный кластер (см. рисунок). Для сравнения, 6-ядерный процессор Intel Core i7-4930K с частотой 3,7–4,2 ГГц имеет производительность 130–140 гигафлопсов (теоретический пик 177 ГФлопс). Это означает, что теоретически для создания подобного кластера потребуется свыше 7 миллионов таких процессоров.

В общем, невозможного здесь ничего нет, были бы деньги. К примеру, Intel планирует к 2020 году создать суперкомпьютер производительностью 4 эксафлопса. Тем не менее работа по введению в эксплуатацию и поддержке подобных систем крайне нелегка, поэтому пожелаем исследователям удачи.

Поскольку приоритетным научным результатом проекта Human Brain должна стать модель мозга человека (по ее аналогии легко можно будет разработать модель мозга любого млекопитающего), построенная на данных, полученных из биологических экспериментов, ее авторы (подпрограмма SP6) просто обязаны активно взаимодействовать с другими участниками данной инициативы, чтобы эту информацию получить и использовать. Причем от такого взаимодействия - двойная выгода. С одной стороны, на основании таких данных строится действующая модель (SP6), с другой, по мере ее тестирования становится очевидным, каких исследований еще не хватает (SP1, SP2, SP3, SP4). Такой процесс позволит более целенаправленно планировать эксперименты.

По отзывам экспертов создается впечатление, что SP1 и SP2 проводят работу независимо от целей и задач SP6. Аналогичная ситуация и с SP3 и SP4. При этом именно «сырых» данных пока недостаточно для построения работающей модели мозга.


Группа исследователей из Йельского университета изучает работу мозга с помощью массива из 64 датчиков на голове пациентов

Примечательно, что именно к разработчикам моделей - а они являются сердцем проекта - у экспертов возникло большинство претензий. Досталось и инженерам платформы «Нейророботы» (SP10), построившим модель «Виртуальная мышь», где они использовали упрощенную модель мозга, привязанную к модели тела (все это расположено в виртуальной окружающей среде). В основу модели легли данные института мозга Аллена (Сиэтл, США), Биомедицинской информационной исследовательской сети (Сан-Диего, США) и данные, полученные в результате исполнения проекта Blue Brain (Женева, ЕС). В представленной упрощенной модели было использовано 200 тыс. нейронов (всего в мозге мыши 75 млн нейронов).

Такая модель, несомненно, интересна сама по себе, поскольку, во-первых, является примером решения задачи по интеграции различного рода данных, полученных из различных источников, а во-вторых, представляет собой мощный инструмент не только для проведения исследований, но также для отработки интеллектуального поведения объектов в робототехнике (механизм ответа на внешнее возбуждение).

Однако претензии экспертов к группе SP10 заключались в том, что последние сосредоточились больше на эргономике разрабатываемого инструментария, а также на пакетах визуализации в ущерб свойствам самих моделей (мозг, тело, окружающая среда). Данное обстоятельство, по мнению экспертов, ставит под сомнение возможность использования и научную ценность подобного инструментария.

В защиту проекта можно сказать, что к моменту предоставления результатов прошел лишь год с его начала, и при должных усилиях указанные недочеты легко можно исправить.

Исследования в США

Инициатива B.R.A.I.N.

Название „B.R.A.I.N.” расшифровывается как „Brain Research Through Advancing Innovative Neurotechnologiеs” («Изучение мозга путем развития инновационных нейротехнологий»). Инициатива трансформировалась из программы Brain activity map («Карта активности мозга»), которая предполагала научиться регистрировать импульсы всех нейронов в мозге животных. Задачи инициативы серьезно расширились и теперь данный проект выглядит еще более амбициозным, чем Human Brain, и как большинство американских инициатив.

«Нам предстоит открыть глубокую тайну, и проект B.R.A.I.N. поможет в этом. Он даст ученым возможность составить в динамике картину деятельности головного мозга и лучше понять, как мы думаем, учимся и запоминаем», - заявил президент США Барак Обама, объявляя о запуске программы.

Глобальные цели исследований не новы: углубление научных знаний о болезни Альцгеймера, аутизме, эпилепсии и других расстройствах, связанных с высшей нервной деятельностью, исследование возможности ранней диагностики и лечения этих заболеваний. Но авторы проекта не исключают возможности появления прорывных открытий в процессе исполнения инициативы.

B.R.A.I.N. предполагает создание атласа клеток головного мозга на основе их полных молекулярных характеристик (ДНК, РНК, белки, простые молекулы), карты их связей друг с другом (коннектом), инструментов для объединения этих данных с информацией о когнитивных функциях. Инициатива также предполагает построение моделей здорового мозга и мозга с различными патологиями, что позволит исследовать причины их возникновения и развития. Все это в том или ином виде присутствует в европейском Проекте Human Brain.

B.R.A.I.N. - доступным языком

Сейчас для того, чтобы провести операцию на человеческом мозге (например, удалить эпилептический участок или вживить имплантат для устранения тремора), хирург каждый раз должен проводить его картирование. Происходит это следующим образом. На операционном столе лежит человек в полном сознании, его череп вскрыт. Врач осторожно касается специальным стимулятором различных областей мозга, а пациент должен отвечать ему, что он чувствует, как изменилось его состояние. Во время почти 4-часовой операции в 2008 году врачи стимулировали различные участки мозга американскому музыканту Эдди Эдкоку, а он играл на банджо и сообщал, есть ли эффект от такой стимуляции (у него был тремор, мешающий играть). Локализовав участок, ответственный за проявление патологии, в него вживили электрод. Пациент выздоровел и дал концерт по окончании операции.

Неинвазивные методы картирования головного мозга, его подробные карты, а также методы адресной стимуляции (физической или лекарственной) определенных участков серого вещества могли бы существенно упростить подобные процедуры. Только представьте: пациенту надевают шлем и начинают последовательно с некоторыми интервалами возбуждать те участки мозга, которые предположительно могут быть ответственны за недуг. И все, что нужно пациенту - вовремя нажать на кнопку, чтобы дать системе сигнал: мне стало лучше. Легкая калибровка, точечное воздействие - лечение завершено, пациент здоров.



Основное отличие этих двух проектов в том, что европейцы сосредоточились на создании компьютерных моделей, симулирующих работу мозга, а американцы будут в первую очередь разрабатывать новые технологии, инструменты, методы проведения исследований, точечного воздействия на мозг (по возможности неинвазивные), и только потом приступят к фундаментальным задачам.

О запуске инициативы B.R.A.I.N. стало известно в 2013 г. Сроком начала ее реализации был объявлен сентябрь 2014 г. (с этого месяца начинается финансирование большинства проектов). Программа рассчитана на 12 лет.

В работе над проектом принимают участие пять федеральных агентств: Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA), Агентство передовых исследований в сфере разведки (IARPA), Национальный институт здравоохранения (NIH), Агентство передовых оборонных разработок (DARPA) и Национальный научный фонд (NSF). Помимо этого, участники Национальной инициативы в фотонике, а также компании GE, Google, GlaxoSmithKline и Inscopix предоставили свою инфраструктуру в качестве вклада в B.R.A.I.N., а многие частные фонды, организации и университеты согласились участвовать в финансировании исследований.

Как планируют идеологи инициативы (главный координатор - Национальный институт здоровья, NIH), первые два года (финансовые 2014-й и 2015-й) станут подготовительными, основной фокус первой «пятилетки» (финансовые 2016–2020 гг.) будет направлен на разработку новых технологий исследований мозга, а в течение следующей «пятилетки» (2021–2025 гг.) с использованием разработанных технологий будут, как надеются ученые, сделаны фундаментальные открытия.

Основные цели B.R.A.I.N.

1. Исследование разнообразия: экспериментальное описание всех типов клеток головного мозга, их роли в здоровом и больном мозге. Это необходимо для систематизации клеточного разнообразия. С помощью полученных данных будут разработаны инструменты записи, маркировки и манипуляции нейронами на живом мозге, а также методы избирательной доставки генов, белков и простых веществ в клетки мозга.

2. Картирование в крупных масштабах: создание диаграмм нейронных связей в разрешении от отдельных синапсов до мозга в целом. Такая карта позволит выявлять связи не только между соседними клетками, но также клетками, расположенными в разных участках мозга, исследовать взаимосвязь между отдельными его областями. В перспективе будут разработаны быстрые и менее дорогие технологии реконструкции нейронных сетей в любом масштабе (от неинвазивного исследования целого мозга до исследования отдельных синапсов на субклеточном уровне).

3. Мозг в действии: получение динамических картин функционирования мозга с использованием новых методов мониторинга нейронной активности (запись сигналов всех нейронных сетей в течение длительных временных интервалов). Данные исследования позволят усовершенствовать существующие и разработать новые технологии работы с нейронами, включая методы, основанные на использовании электродов, оптики, молекулярной генетики и др.

4. Демонстрация причинно-следственных связей: соотнесение активности мозга с поведенческими рефлексами с использованием инструментов, изменяющих динамику нейронных сетей (активация или торможение популяций нейронов). Будут разработаны специальные инструменты для манипуляции нейронными сетями модельных животных и впоследствии человека (для оптогенетических, хемогенетических, биохимических и электромагнитных модуляций).

The NPI brings together experts from industry, academia and government to assemble recommendations that will help guide US funding and investment in five key photonics-driven fields: advanced manufacturing, communications & IT, defense & national security, energy and health & medicine.

5. Идентификация фундаментальных принципов: разработка моделей биологических основ психологических процессов с использованием новых теоретических инструментов. Теория, моделирование и статистический анализ позволят провести комплексный нелинейный анализ функциональных особенностей мозга. Разработка новых методов анализа и интерпретации данных будет осуществляться в тесном сотрудничестве с учеными в области статистики, физики, математики, инженерных и компьютерных наук.

6. Исследования человека: разработка инновационных технологий исследования мозга человека и лечения его патологий, создание и поддержка интегрированных исследовательских консорциумов. Разработка системы привлечения людей, страдающих различного рода патологиями мозга и проходящих обследование и лечение в клиниках, к научным исследованиям. Такая система помимо создания инструментов сбора и обработки данных о пациентах потребует формирования строгих этических норм и систем защиты персональных данных о пациентах.

7. От инициативы B.R.A.I.N. к мозгу: новые технологии и подходы, описанные в п. 1–6, продемонстрируют, как динамические массивы нейронной активности трансформируются в такие действия человеческого мозга как познание, эмоции, восприятие и действие. Это станет наиболее важным результатом работы инициативы.

Помимо исследовательских задач, инициатива предполагает развитие инфраструктурных проектов, среди которых наибольшую важность представляют:

Организация параллельных исследований человеческих и «нечеловеческих» моделей;

Механизмы междисциплинарного взаимодействия;

Интеграция данных в пространственных и временных шкалах (динамические модели);

Разработка платформы для хранения и обмена данными;

Валидация и внедрение новых технологий в практику;

Этические последствия применения результатов исследований;

Механизмы налоговой отчетности участников проекта.


Распределение финансирования ФГ14-ФГ25 между дисциплинами.

Две масштабных программы США и Европейского союза, очевидно, дополняют друг друга. Наличие же точек их пересечения позволяет организовывать совместные международные исследования. Например, цели подпрограмм SP1–SP5 проекта Human Brain совпадают с задачами, заявленными в п. 1–5 B.R.A.I.N., а цели SP8 совпадают с задачами п. 6. Что касается инфраструктуры, то она уже давно общая для научных сообществ США и Европы.

Инициатива B.R.A.I.N. предусматривает общее финансирование в объеме $4,9 млрд. Ожидания затрат авторов проекта показаны на рис. ниже. Таким образом, в течение ближайших 10 лет можно ожидать появления прорывных технологий в исследовании мозга и лечении его патологий.

Исследования в Японии

Проект под названием «Картирование мозга с использованием интегрированных нейротехнологий для изучения патологий» (Brain Mapping by Integrated Neurotechnologies for Disease Studies), сокращенно - Brain/MINDS, стартовал в июне 2014 года. Финансирование проекта в 2014 году составило ¥3 млрд ($27 млн), в 2015 году оно должно вырасти до ¥4 млрд.

Программа поддержана Министерством образования, науки и технологии (MEXT). Головной организацией выступит Институт науки о мозге RIKEN (BSI).

本プロジェクトは、神経細胞がどのように神経回路を形成し、どのように情報処理を行うことによって、全体性の高い脳の機能を実現しているかについて、革新的技術を生かし、その全容を明らかにし、精神・神経疾患の克服につながるヒトの高次脳機能の解明のための基盤を構築することを目的として実施します。

Проект направлен на изучение фундаментального вопроса: как работает сознание человека? Инициатива имеет следующие цели: выяснить все функции человеческого мозга; усовершенствовать методы диагностики и лечения его патологий; разработать информационные технологии, основанные на механизмах работы мозга.

Важной особенностью проекта Brain/MINDS является то, что его авторы большинство исследований будут проводить на модельных животных - мартышках Callithrix jacchus. Они небольшого размера и хорошо размножаются, поэтому с ними удобно работать и легко пополнять популяцию. Кроме того, по анатомии мозга, социальному поведению (включая отношения между родителями и потомством) эти обезьяны похожи на людей. Они обладают уникальными голосовыми способностями, к тому же модели их нейродегенеративных заболеваний и человека весьма схожи.

Другие важные преимущества работы именно с модельными животными и именно с мартышками Callithrix jacchus:

Фронтальная лобная кора хорошо развита и более соответствует коре человека, чем у других модельных животных - например, грызунов, часто используемых в экспериментах;

Компактный мозг (весом всего 8 г) является преимуществом при проведении анализа нейронных сетей целого мозга;

Мозг имеет меньше слоев, что упрощает процедуру его изучения методами функциональной магнитно-резонансной томографии, оптическими, контрастными и электрофизиологическими методами;

С мартышками можно проводить генетические эксперименты, модификации и манипуляции - это крайне важный аспект данного проекта, поскольку позволяет in vivo моделировать и изучать многие процессы (например, можно создать линию, которая обязательно будет болеть, скажем, болезнью Альцгеймера).

С помощью исследований трансгенных животных (в Японии, в отличие от США и ЕС, законодательство позволяет проводить подобные эксперименты) ученые смогут определить отправные точки развития нейродегенеративных заболеваний. Когда диагностируется болезнь Альцгеймера, то есть когда начинают проявляться первые ее симптомы, сделать уже ничего нельзя. Процесс деградации нервных волокон запущен, клетки гибнут, мозг сжимается, человек теряет память, наступает смерть. Ранняя диагностика - залог успешного лечения при любых патологиях. Таким образом, определив точку отсчета, изучив процесс возникновения и развития заболевания целиком, можно разработать терапевтические средства не только лечения, но предотвращения подобных патологий в принципе.

Кроме того, на животных будут отработаны современные технологии терапии - все те, которые упоминались в начале статьи.

Подробнее о DTI-MRI

Метод диффузионной тензорной магнитно-резонансной томографии с трактографией основан на измерении величины и направления диффузии молекул воды в веществе мозга. Было установлено, что движение молекул воды вдоль волокон белого вещества происходит гораздо активнее, чем в перпендикулярных направлениях, эта разница и легла в основу получения диффузионных тензорных изображений. С помощью данного метода можно оценить степень поражения мозга. Она позволяет создать трехмерную реконструкцию волокон белого вещества, а также обнаружить и оценить повреждение нервных связей. Кроме того, получаемые с ее помощью данные можно использовать для установления корреляций между поражением нейронных связей и неврологическим дефицитом в соответствующей системе.

Для выявления механизмов, лежащих в основе процессов, происходящих в нашей голове (чувства, поведение, патологии), исследователи должны интегрировать большое количество данных разного уровня.

Для этого задачи проекта разделены на три категории, каждой из которых занимается отдельна группа исследователей:

Группа A - структура и функциональное картирование мозга мартышки Callithrix jacchus;

Группа B - разработка инновационных нейротехнологий для картирования мозга;

Группа C - картирования мозга человека и клинические исследования.

Группа A находится под управлением профессора Хидеюки Окано (Институт наук о мозге RIKEN и Школа медицины университета Кейо). Исследования разделены на несколько уровней: макро-, мезо- и микроскопический.

На макроуровне авторы продемонстрировали потенциал метода диффузионной тензорной магнитно-резонансной томографии с трактографией (DTI-MRI) в диагностике болезни Паркинсона. Исследования, проведенные на модельных животных (мартышках, страдающих паркинсонизмом) показали, что метод позволяет выявить изменения в областях мозга, ответственных за развитие данного заболевания, что может использоваться в клинической практике. С использованием DTI-MRI была построена трехмерная модель мозга мартышки, которую можно использовать для сравнения мозга с патологией и мозга контрольной группы. Авторы намереваются в тесном сотрудничестве с клиницистами (группа В) исследовать возможность использования данного метода в диагностике различных нейродегенеративных заболеваний.


Волокнистая структура белой материи и областей целого мозга мартышки была реконструирована в виртуальном пространстве с использованием данных, полученных с использованием метода DTI-MRI с трактографией. Волокна белой материи содержат множество продолжительных нитей, соединяющих различные области мозга. На структуре целого мозга также можно увидеть связи областей друг с другом

Методами световой микроскопии (уровень среднего разрешения), введением флуоресцентных меток и гибридизации in situ будет исследоваться экспрессия генов, ответственных за возникновение и развитие патологий мозга, а также таких физиологических функций как зрение. С использованием аденовирусов группа будет внедрять гены синтеза разных флуоресцентных белков (эти белки светятся при их возбуждении излучением определенной длины волны) и, таким образом, отслеживать нейроны, распределение их аксонов, связей с другими клетками. Кроме того, специально для целей разработки карт будут созданы уникальные линии мартышек, дефектные по одному или нескольким генам, связанным с организацией работы мозга.

1

В данной обзорной статье представлены научные достижения многих известных ученых по изучению мозга человека. Организм человека представляет собой слаженную работу мозга с другими органами и системами. Исследования функций мозга человека проводились такими известными учеными, как И.М. Сеченов, И.П. Павлов, Н.П. Бехтерева и многими другими. Ими были исследованы и показаны основополагающие представления о функциях мозга. Несмотря на множество проведенных исследований, человеческий мозг остается самым загадочным и малоизвестным науке органом. Он не так легко раскрывает свои тайны. Серое вещество мозга определяет уникальный, разнообразный внутренний мир с воспоминаниями, фантазией, эмоциями и желаниями. С развитием современных методов исследования в области нейрофизиологии, возможностью применения новейшей аппаратуры ученым удалось раскрыть некоторые тайны мозга.

нейрофизиология

медицина

сигнал возбуждения

1. Бехтерев В.М. Психика и жизнь // Книжный клуб Книговек. – 2015. – С. 220–221.

2. Бехтерева Н.П. Магия мозга и лабиринты жизни. – М., 2013. – C. 156–168.

3. Кобозев Н.И. Исследование в области термодинамики процессов информации и мышления. – М., 1971. – С. 58–59.

4. Сеченов И.М. Рефлексы головного мозга. – М.: АСТ, 2014. – С. 70–80.

5. Медведев С.В. Тайны мозга человека // Вестник РАН – 2005. – № 6.

6. Страук Б. Тайны мозга взрослого человека. Удивительные таланты и способности человека, достигшего середины жизни. – М.: Карьера Пресс, 2011.

7. Стюар-Гамильтон Я., Рудкевич Л.А. Психология старения // Питер, 2010. – С. 155–169.

С развитием новых методов в нейрофизиологии скрытые возможности мозга человека становятся объектом научных исследований. В.М. Бехтерев , Н.П. Бехтерева , Н.И. Кобозев и многие другие в своих исследованиях доказали, что физиологический мозг не способен полностью обеспечивать сознательные и тем более бессознательные функции из-за низкой скорости передачи электрических импульсов в межнейрональных синапсах. Известно, что в синапсах импульсы задерживаются на 0,2-0,5 миллисекунд, тогда как человеческая мысль возникает гораздо быстрее.

На данном этапе развития нейрофизиологии мы хорошо представляем, как работает одна нервная клетка. Основываясь на данных научных исследований академика П.К. Анохина, в возникновении временной связи при образовании условных рефлексов лежит сенсорно-биологическая конвергенция импульсов на каждой клетке коры. Метод ПЭТ дает возможность проследить, какие области функционируют при выполнении тех или иных психических функций, но все же недостаточно известным остается то, что происходит внутри этих областей, в какой последовательности и какие сигналы посылают друг другу нервные клетки и как они взаимодействуют между собой. На карте мозга, определены области, отвечающие за те или иные психические функции. Но между клеткой и областью мозга находится еще один, очень важный уровень - совокупность нервных клеток, так называемый ансамбль нейронов, функции которых представляют большой научный интерес.

В своей работе «Рефлексы головного мозга» И.М. Сеченов впервые утверждал, что в основе психических процессов лежит рефлекторный принцип деятельности. Он приводил утвердительные доказательства рефлекторной природы психической деятельности, то есть все переживания, мысли, чувства, возникают в результате воздействия на организм какого-либо физиологического раздражителя. И.П. Павлов создал свою теорию условных рефлексов, согласно которой горизонтальная корковая временная связь при образовании условных рефлексов основывается на свойствах нервных центров - иррадиации, доминантного возбуждения центров безусловных раздражителей и проторении пути. Много исследований было проведено В.М. Бехтеревым, который занимался строением мозга, связывал с ним его функции. Им предложен метод, позволяющий досконально изучить пути нервных волокон и клеток, по которым создан «атлас головного мозга». Настоящий прорыв в изучении мозга происходит тогда, когда удается войти в прямой контакт с клеткой мозга. Метод представляет собой непосредственное вживление в мозг электродов в диагностических и лечебных целях. Электроды вживляются в различные отделы мозга, при раздражении которых происходит повышение его активности, что позволяет детально изучить процессы, происходящие в нем.

Предполагалось, что мозг поделен на четко разграниченные участки, каждый из которых «отвечает» за свою определенную функцию. Например, это зона, отвечающая за сгибание мизинца, а это зона, ответственная за любовь. Эти выводы основывались на простых наблюдениях: если данный участок повреждался, то и соответственно функция его нарушалась.

В настоящее время становится ясным, что все не так просто: нейроны внутри разных зон взаимодействуют между собой весьма сложным путем, и нельзя осуществлять везде четкую «привязку» функции к области мозга в том, что касается обеспечения высших функций, то есть можно лишь сказать, что данная область имеет отношение к памяти, речи, эмоциям. Пока трудно объяснить, что этот нейронный ансамбль не кусочек мозга, а широко раскинутая сеть и только он отвечает за восприятие букв, а другой ансамбль - за восприятие слов и предложений. Сложная работа мозга по обеспечению высших видов психической деятельности похожа на вспышку салюта: мы видим сначала множество огней, а потом они начинают гаснуть и снова загораются, перемигиваясь между собою, какие-то кусочки остаются темными, другие вспыхивают. Таким же образом и сигнал возбуждения посылается в определенную область мозга, но деятельность нервных клеток внутри нее подчиняется своим особым ритмам, своей иерархии. Благодаря этим особенностям разрушение одних нервных клеток может оказаться невосполнимой потерей для мозга, а другие вполне могут заменить соседние «переучившиеся» нейроны, то есть проявляется свойство нервных центров - пластичность. К выполнению своей работы ряд нейронов готов с самого рождения, а есть нейроны, которые можно «воспитать» в процессе развития, поэтому можно попытаться заставить их взять на себя работу утраченных клеток.

Нейроны подкорковых глубоких структур мозга решают задачу всем миром, сообща. Тогда как нейроны коры, которые эту проблему решают самостоятельно, в действительности повышают ее активность, а частота импульсаций нейронов глубинных структур понижается. Высшие функции мозга обеспечиваются расшифровкой нервного кода, то есть пониманием того, как отдельные нейроны объединяются в структуры, а структура - в систему и в целостный мозг .

По мнению ученых, вокруг головного мозга было выявлено высокочастотное поле, отличающееся от общего биополя человека. Оно получило свое название - психополе. Психополе обеспечивает нормальное высокоскоростное протекание всех нейрофизиологических процессов. Определено, что это психополе настолько высокоэнергетично, что нуждается в особых носителях, которыми являются кристаллы эпифиза. Они дают возможность держать в белковом теле огромный энергоинформационный объем без денатурации белка.

В 60-х годах 20-го столетия профессор МГУ Н.И. Кобозев , исследуя феномен сознания, пришел к выводу, что материальная физиология мозга сама по себе не обеспечивает мышления и другие психические функции. Это возможно за счет внешних источников сверхлегких частиц-психонов, которые являются энергетической основой мыслительных и эмоциональных импульсов. В исследованиях был определен органоид, способный улавливать потоки психонов. Было установлено, что кристаллики эпифиза являются носителями голограмм, которые определяют пространственно-временное развертывание всех психогенетических программ, заложенных при рождении. Огромное количество информации о различных позитивных и негативных программах жизни человека хранится в кристалликах эпифиза. Силы психического и духовного воздействия на кристаллики эпифиза определяют, как и какие программы будут реализованы человеком в течение жизни. У многих людей этот процесс протекает неосознанно, и они не могут полностью реализовать свой энергоинформационный потенциал. И по этой причине даже гениальные люди реализуют свои задатки всего лишь на 5-7 процентов.

В критической ситуации, когда проблему надо решать немедленно, начинается активная выработка психической энергии огромной силы. И тогда совершается спонтанный неуправляемый психоэнергетический процесс воздействия на кристаллики эпифиза и в них активируется программа выхода из кризисной ситуации. Только выработка мощных высокодуховных энергий кратковременна, и когда кризис разрешается, забывается величайшие мгновения психоэнергетического напряжения. И не многие могут осознанно управлять психической энергией и решать с ее помощью различные проблемы .

Современная нейрофизиологическая наука уделяет особое внимание изучению психоэнергетических процессов в головном мозге. Есть множество институтов и лабораторий, разрабатывающих теоретические проблемы данного направления, разработки которых позволяют практической психологии заниматься проблемами активации резервов психики человека, опираясь не только на эмпирический опыт, но и на научные данные. Сложные нестандартные проблемы могут быть эффективно решены только при активации программ развития, в пробуждении скрытых резервов психики. Данный подход дает возможность проявить весь потенциал личности и предоставить эффективные способы его реализации.

В возрасте 40-70 лет мозг имеет свои особенности. Интеллектуальная «мощь» при здоровом образе жизни не падает с возрастом, а только возрастает. Максимальное проявление когнитивных функций находится в интервале 40-60 лет. С 50 лет человек при решении проблем использует одновременно не одно полушарие, как у молодых, а оба (мозговая амбидекстрия). Считается, что в среднем возрасте человек становится более устойчив к стрессам и может более эффективно работать в условиях сильной эмоциональной нагрузки. Нейроны головного мозга не отмирают как полагали до 30 %, а могут пропадать связи между ними в том случае, если человек не занимается серьезным умственным трудом. Количество миелина (белое вещество мозга) с возрастом в головном мозге возрастает, и достигает максимума после 60 лет, при этом значительно возрастает интуиция.

Мозг в 40-70 лет принято рассматривать не как зрелый, целостный и готовый к работе, а как находящийся на спаде и не вполне справляющийся со своими функциями. Ряд российских ученых-психологов пришел к такому же выводу: с возрастом мозг человека начинает работать эффективнее, чем в молодости.

Библиографическая ссылка

Жумакова Т.А., Рыспекова Ш.О., Жунистаев Д.Д., Чурукова Н.М., Исаева А.М., Алимкул И.О. ТАЙНЫ ЧЕЛОВЕЧЕСКОГО МОЗГА // Международный журнал прикладных и фундаментальных исследований. – 2017. – № 6-2. – С. 230-232;
URL: https://applied-research.ru/ru/article/view?id=11656 (дата обращения: 19.09.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Человеческий головной мозг – это самый сложный по своей структуре орган. Даже в эпоху инновационных способов диагностирования, постоянных исследований этого органа, ученые до сих пор не могут полностью описать физиологические механизмы его различных психических функций. Постоянные исследования ученых затрагивают не только его физиологические особенности, но и также психические процессы, такие как мышление, память, сон, внимание и ряд других процессов.

На сегодняшний день известно, что в мозге функционирует некоторое количество систем, каждую из которых можно выделить, как отдельный мозг, который функционирует в сотрудничестве с другими отделами. Из известных и наиболее важных систем выделяют:

  • Активирующую
  • Мотивационную
  • Когнитивную

Стоит отметить, что каждая система отвечает не только за свою основную функцию, но и выполняет ряд второстепенных задач. Например, активирующая часть определяет наше сознание, цикл сна-бодрствования, и также выполняет познавательные функции. Если у человека существует проблемы со сном, то процесс обучаемости или другой деятельности, не может функционировать в полную силу.

Одно можно сказать точно, человеческий мозг – это единый орган, который обеспечивает все наши процессы жизнедеятельности, психические функции, но для более удобного описания разбит на несколько вышеперечисленных систем (мозгов).

Взаимоотношения мозга и психики вызывают на сегодняшний день множество вопросов. Поэтому наука уделяет этому вопросу достаточно много внимания. Этому вопросу задавались еще с давних времен, такие великие умы, как Гиппократ и Аристотель. В 19 веке впервые были выявлены участки мозга координирующие человеческую речь - это области Брока и Вернике.

Открытия тех времен всё равно были недостаточны, чтобы понять, как работает наше сознание. Постепенно начались вводиться различные новые методы исследования мозга человека: психологические и клинические тесты, электроэнцефалограмма (), но этого все равно было недостаточно. Постепенно изучение мозга перешло на новый этап, его структура и функции были достаточно хорошо изучены, но чтобы полностью понять, как работает этот чудо-инструмент, потребуется еще ни один десяток лет.

Настоящее открытие в постижении мозговых особенностей было совершенно с помощью применения имплантированных электродов с целью диагностики и лечения пациентов. Именно в этот момент специалисты начинают понимать, как работает каждая отдельная нервная клетка, каким образом передается информация от одной клетки к другой, ее движение по нерву и т. д.

В итоге это позволило выделить несколько зон и разделов мозга, а именно коры, подкорки и другие. Мозг человека состоит более чем из 85 млрд нервных клеток, но электроды позволяет исследовать лишь несколько десятков, при этом которые находятся непосредственно возле подключенных датчиков.

Именно в 21 веке началась техническая революция, когда вычислительные возможности позволили исследовать практически любую часть мозга, его высших функций. Такие методы как ЭЭГ, позволили буквально заглянуть внутрь мозга.

Структура и функции мозга

Наука человеческого мозга выделяет основное правило, которое можно охарактеризовать как принцип единства структур и функций. Головной мозг состоит из:

  • Больших полушарий, которые являются самой крупной и отвечает за высшие психические процессы
  • Промежуточный мозг состоит из двух равноправных частей:
  • Таламус выступает в роли сигнального распределителя, направляющийся к участкам коры
  • Гипоталамус, является «заведующей» вегетативными функциями. Благодаря ему у человека существует возможность расти и развиваться, а также поддерживать температуру тела, контролировать выведение шлаков из организма, прием пищи, воды и ряда других жизненно важных процессов.
  • Мозговой ствол, в состав которого входят:
  • Средний мозг
  • Продолговатый мозг

Благодаря этим трем составляющим осуществляется формирование сложных функций организма.

  • Мозжечок. Также как и головной мозг состоит из двух полушарий, которые соединены «червем». Функции мозжечка многогранны, но в особенности он отвечает за двигательную координацию, регуляцию равновесия и мышечный тонус.
  • Спинной мозг. В его состав входят 30 сегментов, а заключен он в позвоночник. Каждому сегменту соответствует один позвонок. Данный отдел выполняет функцию «передатчика», которая посылает импульсы к определенным участкам тела от отделов ЦНС. Также его деятельность заключается в осуществлении вегетативных рефлексов.

Методы исследования структур, его функций, а также расположение головного мозга, постоянно улучшаются. Так, современные методики диагностирования, позволяют сформировать отчетливое мнение о строении головного мозга, не повреждая его. Одним из таких методов является магнитно-резонансная томография. Данный метод применяется в целях распознавания, например, опухолевых образований. При этом метод обладает высокой точностью и отсутствием негативных проявлений после его применения.

Нервная клетка – ключевой элемент нервной ткани

Мозг состоит из множества нервных клеток. Например, просто сформированные животные могут иметь всего 1 клетку. Однако человеческий мозг насчитывает около 85 млрд. из-за сложности организации мозга.

Ключевое место в клетке занимает ядро, где располагается аппарат, генерирующий генетический код строения человеческого организма. Среди других, наиболее важных частиц мозга, выделяют эндоплазматический ретикулум, который состоит из множества мембран. Второй по важности частицей выступают митохондрии. Благодаря их работе, в нервной клетке поддерживается нужно количество АТФ, так называемого «топлива» клетки.

Выделяют два ключевых свойства нейронов выступает:

  • Генерация электрического импульса (возбуждение)
  • Проведение возбуждения (передача)

Получение клеткой определенных сигналов сопровождается преобразованием или подавлением синтеза некоторых генов в основном нейропептидов. Данные пептиды образуются в центральной или периферической нервной системе. Основная функция пептидов – регулирование физиологических функций человеческого организма. В их состав входит около 30-50 остатков аминокислот.

На сегодняшний день установлено, что синтезирование, заключается в образовании пептидов-предшественников. После заключения трансляции нейропептиды головного мозга выщепляются протеазами. Основу пептидов-предшественников, как правило, составляет несколько их последователей нейронного типа, а также последовательность сигналов, которые способствуют передвижению пептида в цитоплазме, после того как процесс синтеза был завершен на мембранах внутриклеточного органоида.

Одним из моделирующих нейропептидов является морфин и кодеин, которые составляют два активно-образующих компонента морфия. Воздействие морфина на головной мозг широко изучено, благодаря синтезированию антагониста морфина – налоксона.

Исследование структур мозга: стереотаксис

Одним из современных способов, благодаря которому можно исследовать глубинные структуры мозга, является стереотаксис. Данный нейрохирургический способ изучения нейрофизиологии мозга человека является наиболее малотравматичным, что позволяет его поставить на первое место и отодвинуть практически все «открытые» нейрохирургические методы.

Стереотаксис позволяет эффективно воздействовать на пациентов с заболеваниями двигательного аппарата (болезнь Паркинсона), эпилепсией, острыми болями, психическими патологиями. Также данный способ зарекомендовал себя в диагностике и терапии опухолевых и кистообразных образований, гематом и абсцессов.

Однако к данному способу прибегают, только в крайней необходимости, а именно если медикаментозная терапия не дает никакого эффекта или здоровье и жизнь пациента находятся в опасности.

Выделяют 2 типа стереотаксиса:

  • Нефункциональный. Проводится, когда в глубине мозга расположено какое-либо патологическое образование, например, опухолевое. Если использовать стандартный способ хирургического удаления опухоли, то в этом случае затрагиваются структуры мозга, что тем самым может нанести пациента. При использовании нефункционального типа стереотаксиса, дается возможность введения радиоактивных веществ, которые впоследствии , а сами вещества распадаются. Однако метод применим, если МРТ диагностика показала точную локализацию опухоли, то есть врач должен точно выявить пораженную область, тогда возможности избавления от новообразования существенно повышаются.
  • Функциональный. Данный способ чаще проводится в целях терапии психических патологий. Как правило, в этом случае заболевание характеризуется поражением незначительной группы нервных клеток или когда нарушена работа некоторых групп нервных клеток. То есть группа клеток может не синтезировать необходимые вещества или, наоборот, превышать должный вырабатываемый объем. Когда клетки аномально возбуждены, они могут стимулировать аномальную активность других. С помощью электростимуляции существует возможность преобразования нервных клеток, однако, при этом пораженный участок виден не будет, специалисты высчитывают расположение пораженной области на основании диагностического заключения и необходимых тестов.

На сегодняшний день было проведено несколько сотен стереотаксических психохирургических операций, в целях лечения заболеваний нервной системы, которые проводились по причине неэффективности других методов нехирургического воздействия. Также данный метод может применяться к людям с наркотической зависимостью, которым не дало должного эффекта.

Физиологические механизмы сна

Физиология головного мозга человека в состоянии сна находится на постоянном наблюдении ученых из разных областей. Знаменитый древнегреческий целитель Гиппократ утверждал, что возникновение сна происходит в результате оттока крови к внутренним участкам тела.

На сегодняшний момент установлено, что сон благоприятно стимулирует наше настроение, память, уровень работоспособности. Специалисты выделяют, что нарушения сна является первоочередным фактором психической патологии. Состояние данной проблемы получило огласку благодаря внедрению новых способов исследования, а именно метод полиграфической диагностики («детектор лжи»). Также широко используются методы лабораторных обследований и ряд психологических.

На сегодня выделяют два состояния сна:

  1. «Медленный». Данное состояние возникает как своеобразная совокупность ядер, содержащая серотониновые нервные клетки, протягивающиеся по срединной линии через мозговой ствол.

Приостановка выработки серотонина приводит к состоянию бессонницы, которая может быть купирована только предшественником серотонина – гидрокситриптофаном. Если ядра находятся в остром патологическом состоянии, то это приводит к бессоннице хронического характера.

  1. «Быстрый - это фаза сна, которая обуславливается увеличенной мозговой активностью. Одним из признаков является стремительное движение глаз. Проводимые исследования в отношении этого состояния свидетельствуют о значительной потребности в нем. При отказе человека от «быстрого» сна может привести к серьёзным нарушениям психики, а именно к повышенной раздражительности, патологическому состоянию эмоционального фона, галлюцинациям, возможным параноидальным идеям.

На настоящий день исследованию сна уделено достаточно много внимания. Поэтому специалисты выделяют несколько проходимых стадий от состояния бодрствования ко сну. Эти стадии можно отчетливо увидеть при помощи ЭЭГ диагностики, а также по текущему психологическому состоянию пациента.

Ночной сон, как правило, подразделяется на 4 цикла, каждый из которых берет свое начало с фазы «медленного» сна и завершается «быстрым» сном. Продолжительность цикла составляет примерно 70 минут. При снижении дельта-ритма в период отдыха, увеличивается продолжительность 3 и 4 стадий. Если человек откажется от сна, то главным образом увеличиться продолжительность дельта-ритма, он быстрее наступает, и только на вторую ночь возникает защитный механизм - увеличение продолжительности «быстрого» сна.

Грамматическое восприятие

Проводимые исследования позволили обнаружить даже такие регулирующие механизмы, как грамматический детектор. Например, «черная пантера» и «черной пантера». То есть существует некоторая группа клеток, которая импульсивно сообщает мозгу о нарушении грамматики. Это проводится с целью, что восприятие осмысленной речи, часто идет за счет грамматического анализа, если существует какое-либо нарушение, то поступает сигнал о необходимости дополнительного анализа.

Ряд недавних исследований выявило несколько незначительных по размеру участков, отвечающих за различные когнитивные функции. Возникает определенная реакция на различия в деятельности нейронов при восприятии слова на родном языке и несколько другая реакция на иностранное слово.

Глубокие структуры характеризуются высокочастотной электрической разрядностью, а нервные клетки решают задачу группой. Кора же мозга характеризуются единоличной реакцией, то есть у всех нервных клеток понижается частота импульсации, а у избранных – повышается.

Благодаря ПЭТ исследованию, существует возможность изучения всех мозговых участков, регулирующих высшие функции. Суть данного метода заключается во введении изотопа , участвующее в химических реакциях внутри клеток мозга, после чего проводится наблюдение, как меняется распределение данного вещества в исследуемой области мозга.

Например, если область характеризуется усиливающимся притоком глюкозы, то это сигнализирует об усилении обмена веществ, что говорит об усиленной работе нервных клеток в данной мозговой области.

Механизмы внимания

Довольно распространенный вопрос – как функционирует внимание у человека. А именно механизм так называемого непроизвольного внимания начал свое формирование еще несколько миллионов лет назад, как охранная способность, которая и на данный момент продолжает свое функционирование: например, управление автомобилем, прослушивает радио, музыку. Внимание – это своеобразный переключатель, мы слышим звуки, но резко можем переключиться и на иной поток звука.

Если механизмы непроизвольного внимания находятся в патологическом состоянии, то это говорит о протекающем заболевании. Например, при детском заболевании – дефиците внимания и гиперактивности. Заболевание характеризуется в том, что ребенок не в состоянии сосредоточится на чем-либо, по этой причине ребенка зачастую ругают, однако, в этом случае необходимо лечить патологию, а не сбрасывать на недостаточную воспитанность, так как в большинстве случаев у ребенка нарушены определенные механизмы мозговой деятельности.

До 21 века данное явление не считалось каким-либо заболеванием и чаще всего применялись силовые методы воздействия. Сегодня же доступно множество способов лечения дефицита внимания.

Также, кроме вышеперечисленного (непроизвольного) внимания, выделяют селективное. Данный тип позволяет сосредоточится на определенном собеседнике, то есть если в разговоре участвуют несколько человек, ваше внимание будет сконцентрировано только на определенном человеке, который в данный момент интересует.

Для этого проводится своеобразный эксперимент, например, человеку рассказывают какой-либо стих в одно ухо, а другой человек в этот же момент стих – в другое ухо. Во время эксперимента сравнивается реакция определенных областей мозга, в зависимости в какое ухо поступает информация.

Большинство людей при поднятии телефона прикладывают трубку к уху правой рукой, что говорит о том, что деятельность нервных клеток на рассказ в правом ухе, существенно ниже. Это происходит потому, что мозг подсознательно более расслаблен из-за устоявшихся рефлексов и зачастую будет выбирать правую сторону.

Факты о мозге

Свойства мозга человека хоть и являются самой малоизученной частью организма, но все же постоянные исследования этого органа, позволяют выделить ряд его особенностей. Исследованиями мозга занимается целый ряд специалистов. Поэтому открытия возникают из различных медицинских областей, которые, по сути, выделяют наибольшее время именно человеческому мозгу.

На сегодняшний день существует достаточно много удивительных факторов о деятельности главного функционирующего органа, которыми занимается наука о мозге человека.

  1. Максимальные способности кратковременной памяти

У человека выделяют 3 типа памяти: сенсорную, долговременную и кратковременную. Долговременная память работает по принципу жесткого диска, то есть накапливает и содержит в мозге долгое время. Кратковременная память работает по принципу мелкоразмерного электронного накопителя. Данный тип памяти способен запомнить только 5-8 объектов. Именно поэтому номера телефонов в большинстве своем состоят из 7-и цифр.

Однако постоянные тренировки кратковременной памяти позволяют повысить показатели запоминаемости.

  1. Подсознание умнее мозга

Недавнее исследование мозга, проводимое на ряде испытуемых, показали, что наше подсознание умнее нас. В одном из экспериментов показывают сложное изображение. Задача испытуемых заключалась в том, чтобы не думая, указать на то, что специалисты имели ввиду. Основная часть выполнила поставленную задачу в течение нескольких секунд. Другой же группе было предложено обдумать свой ответ, что в итоге обернулось невыполнением задания, при этом стоит отметить, что на обдумывание ответа было выделено несколько часов.

Было доказано, что состав крови, не меняется на протяжении всей активной работы. Взятие крови из вены производилось у пациентов, занимающихся умственной работой на протяжении всего дня. В итоге специалисты установили, что чувство утомления зависит от нашего психического и эмоционального состояния.

  1. Стимулирование мозга как защитная функция от заболеваний

Ученые установили, что регулярная мозговая деятельность, позволяет существенно снизить риск возникновения болезни Альцгеймера. Умственная активность позволяет синтезировать производство дополнительной ткани, что тем самым компенсирует патологическую активность. Стоит выделить, что занятия чем-то новым, наиболее эффективно влияет на мозг. Также специалисты рекомендуют общение с более интеллектуальными личностями, чем вы сами.

  1. Реакция на речь в зависимости от пола

Воспроизведение голоса формируется в разных областях нашего мозга. Женский голос – более музыкален, их звучание происходит на более завышенных показателях частот, также диапазон намного шире, чем у мужчин. Для того чтобы расшифровать смысл того, что говорит женщина, мозгу необходима затратить дополнительные ресурсы. Например, люди с систематическими проявлениями галлюцинаций зачастую слышат мужскую речь, а не женскую.

Похожие публикации