Экспертное сообщество по ремонту ванных комнат

Утилизатор тепла дымовых газов своими руками. Утилизация тепла дымовых газов

Описание:

Брянские тепловые сети совместно с проектным институтом ООО «ВКТИстройдормаш-Проект» разработали, изготовили и внедрили в двух котельных г. Брянска установки утилизации тепла дымовых газов (УУТГ), отходящих от водогрейных котлов

Установка утилизации тепла дымовых газов

Н. Ф. Свиридов , Р. Н. Свиридов , Брянские тепловые сети,

И. Н. Ивуков , Б. Л. Терк , ООО «ВКТИстройдормаш-Проект»

Брянские тепловые сети совместно с проектным институтом ООО «ВКТИстройдормаш-Проект» разработали, изготовили и внедрили в двух котельных г. Брянска установки утилизации тепла дымовых газов (УУТГ), отходящих от водогрейных котлов.

В результате указанного внедрения получено следующее:

Дополнительные капитальные вложения на 1 Гкал/ч получаемого тепла более чем в 2 раза ниже в сравнении, если бы строилась новая котельная, и окупаются приблизительно за 0,6 года;

Ввиду того, что используемое оборудование чрезвычайно простое в обслуживании и используется бесплатный теплоноситель, т. е. дымовой газ (ДГ), ранее выбрасывавшийся в атмосферу, стоимость 1 Гкал тепла оказывается в 8–10 раз ниже стоимости тепла, вырабатываемого котельными;

Коэффициент полезного действия котлов повышен на 10%.

Так, все затраты в ценах марта 2002 года на внедрение первой УУТГ мощностью 1 Гкал тепла в час составили 830 тыс. руб., а ожидаемая экономия в год составит 1,5 млн руб.

Такие высокие технико-экономические показатели объяснимы.

Существует мнение, что коэффициент полезного действия лучших отечественных котлов тепловой мощностью от 0,5 МВт и выше достигает 93%. В действительности он не превышает 83% и вот почему.

Различают низшую и высшую теплоту сгорания топлива. Низшая теплота сгорания меньше высшей на то количество тепла, которое затрачивается на испарение воды, образующейся при сгорании топлива, а также влаги, содержащейся в нем. Пример для наиболее дешевого топлива – природного газа: в ДГ, образуемых при его сжигании, содержатся пары воды, занимающие в их объеме до 19%; высшая теплота его сгорания превышает низшую ориентировочно на 10%.

Для повышения работоспособности дымовых труб, через которые ДГ выбрасываются в атмосферу, необходимо, чтобы пары воды, находящиеся в ДГ, не начали конденсироваться в дымовых трубах при самых низких температурах окружающей среды.

Проектами УУТГ реанимированы и улучшены давно забытые технические решения, направленные на утилизацию тепла ДГ.

УУТГ содержит контактный и пластинчатый теплообменники с двумя самостоятельными контурами оборотной и расходной воды.

Устройство и работа УУТГ ясны из приведенной на рисунке схемы и описания ее позиций.

В контактном теплообменнике в вертикальном противотоке движутся ДГ и распыленная оборотная вода, т. е. ДГ и вода напрямую контактируют друг с другом. Для поддержания равномерного распыления оборотной воды используются форсунки и специальная керамическая насадка.

Нагретая оборотная вода, перекачиваемая в своем водном контуре самостоятельным насосом, отдает тепло, приобретенное в контактном теплообменнике, расходной воде в пластинчатом теплообменнике.

Для требуемого охлаждения оборотной воды должна быть использована только холодная водопроводная вода, которая после нагрева в УУТГ доводится до кондиционной температуры в бойлерах существующих котельных и используется далее для горячего водоснабжения жилья.

В контактном теплообменнике охлажденные ДГ дополнительно проходят каплеуловитель и, потеряв в итоге более 70% влаги в виде конденсата паров воды, соединяются с частью горячих ДГ (10–20% от объема ДГ, отходящих от котла), направленных сразу от котла в дымовую трубу, образуя при этом смесь ДГ с низким влагосодержанием и с температурой, достаточной для прохождения дымовой трубы без конденсации остатка паров воды.

Объем оборотной воды непрерывно увеличивается за счет конденсата паров воды, находившихся в ДГ. Образуемый излишек автоматически сливается через вентиль с электромеханическим приводом и может с подготовкой использоваться в качестве дополнительной воды в отопительной системе котельной. Удельный расход сливаемой воды на 1 Гкал утилизированного тепла составляет около 1,2 т. Слив конденсата контролируется уровнемерами В и Н.

Описанный способ и оборудование утилизации тепла ДГ способны работать с чистыми от пыли продуктами сжигания топлива, имеющими не ограниченную по максимуму температуру. При этом чем выше будет температура дымового газа, тем до более высокой температуры будет нагреваться расходная вода. Более того, в этом случае есть возможность оборотную воду частично использовать на нагрев отопительной воды. Учитывая то, что контактный теплообменник одновременно работает как мокрый уловитель пыли, можно практически утилизировать тепло запыленных ДГ, очищая оборотную воду известными способами от пыли перед подачей ее в пластинчатый теплообменник. Есть возможность нейтрализовать оборотную воду, загрязненную химическими соединениями. Поэтому описанную УУТГ можно использовать для работы с ДГ, участвовавшими в технологических процессах при плавке (например, мартеновские, стекловаренные печи), при прокалке (например, кирпича, керамики), при нагреве (слитков перед прокаткой) и т. д.

К сожалению, в России отсутствуют стимулы, побуждающие заниматься энергосбережением.

Рисунок

Схема установки утилизации тепла дымовых газов (УУТГ)

1 - контактный теплообменник;

2 - вентиль с электромеханическим приводом для автоматического слива излишка оборотной воды, образуемого при конденсации паров воды ДГ;

3 - бак накопительный для оборотной воды, нагретой утилизированным теплом ДГ;

4 - ДГ, отходящие от котла;

5 - часть ДГ, направляемая на утилизацию их тепла;

6 - труба дымовая;

7 - часть ДГ, продолжающая движение по существующему борову в дымовую трубу (6);

8 - задвижка, регулирующая расход части ДГ (5);

9 - задвижка, регулирующая расход части ДГ (7);

10 - охлажденная и осушенная часть ДГ, вышедшего из контактного теплообменника (1);

11 - смесь ДГ (7 и 10), имеющая перепад температур ДГ и его точки росы, равный 15–20°С;

12 - распылитель оборотной воды;

13 - насадка специальная с развитой поверхностью;

14 - декарбонизатор, в котором за счет продувки воздуха через оборотную воду из нее удаляется ранее растворенная двуокись углерода;

15 - продувочный воздух;

16 - каплеуловитель;

17 - система подачи холодной воды;

18 - оборотная вода, нагретая утилизированным теплом;

19 - насос для перекачки оборотной воды;

20 - пластинчатый теплообменник для передачи утилизированного тепла от оборотной воды расходной воде;

21 - охлажденная оборотная вода, направляемая в распылитель (12) и на слив ее излишка через вентиль с электромеханическим приводом (2);

22 - расходная вода, нагретая утилизированным теплом ДГ.

В и Н – датчики верхнего и нижнего уровней оборотной воды в баке накопительном (3);

Таблица 1
Расчетные показатели одной из внедренных УУТГ
Наименование показателя Величина
показателя
Исходные данные
Теплопроизводительность котлоагрегата, Гкал/ч 10,2
75,0
Часовой расход природного газа
при максимальной мощности котла, нм 3 /ч

1 370
Температура ДГ на, °С:
- входе в контактный теплообменник
- выходе из контактного теплообменника

140
30
Коэффициент избытка воздуха 1,25
КПД существующего котлоагрегата по низшей теплотворной способности газа при максимальной тепловой нагрузке, %
92,0
Температура расходной воды, °С:
- на входе в теплообменник:
зимой
летом
- на выходе из теплообменника

+5
+10
+40
Расчетные данные
При горении 1 м 3 природного газа
действительный расход сухого воздуха, нм 3
11,90
Объем ДГ, образуемого при
сжигании 1 м 3 природного газа, нм 3 /Ч

12,96
Объем сухого ДГ, образуемого при сжигании 1 нм 3 природного газа, нм 3 10,90
Объемная доля водяного пара в ДГ, отходящем от котла, % 15,88
Часовой массовый расход, кг/ч:
- ДГ после котла 22000
- сухого ДГ, отходящего от котла 19800
- части сухого ДГ, тепло которой утилизируется 15800
- отходящей от котла части сухого ДГ, используемой для подогрева охлажденной при утилизации тепла другой части сухого ДГ (принято)
4000
Часовой объемный расход, нм 3 /ч:
- ДГ после котла
- сухого ДГ, отходящего от котла
- части сухого ДГ, тепло которой утилизируется

17800
14900
14200
Температура точки росы, °С:
- ДГ, отходящего от котла
- ДГ в контактном теплообменнике после увлажнения оборотной водой
- смеси подсушенного ДГ, прошедшего контактный теплообменник,
и ДГ, напрямую выбрасываемого в трубу

54,2
59,4
Температура смеси подсушенного ДГ, прошедшего контактный теплообменник, и ДГ, напрямую выбрасываемого в трубу, °С 55,1
КПД утилизатора тепла ДГ, % 93
Количество полезно утилизируемого тепла ДГ
при максимальной нагрузке котла, ккал/ч

1 209 800
Количество полезно утилизируемого высшего тепла ДГ, ккал/ч 756 200
Доля высшего тепла в полезно утилизированном тепле, % 61,5
Масса воды, нагреваемой утилизатором тепла
при максимальной нагрузке котла, т/ч:
- оборотной в интервале температур 20-50°С
- расходной в интервале температур 10-40°С

41480
40610

КПД котлоагрегата по высшей теплотворной способности
природного газа и при максимальной тепловой нагрузке, %:
- существующего
- с утилизатором тепла ДГ

82,1
91,8

Теплопроизводительность котлоагрегата
с утилизатором тепла ДГ, Гкал/ч

11,45
Количество полезно утилизированного тепла ДГ
в год при средней годовой нагрузке котла, Гкал

6830

В. В. Гетман, Н. В. Лежнева МЕТОДЫ УТИЛИЗАЦИИ ТЕПЛОТЫ УХОДЯЩИХ ГАЗОВ ОТ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК

Ключевые слова: газотурбинные установки, парогазовые установки

В работе рассмотрены различные методы утилизации теплоты уходящих газов от энергетических установок с целью повышения их эффективности, экономии органического топлива и наращивания энергетических мощностей.

Keywords: gas-turbine installations, steam-gas installations

In work various methods of utilization of warmth of leaving gases from power installations for the purpose of increase of their efficiency, economy of organic fuel and accumulation of power capacities are considered.

С началом экономических и политических реформ в России, в первую очередь необходимо произвести ряд принципиальных изменений в электроэнергетике страны. Новая энергетическая политика должна решить ряд задач, в числе которых освоение современных высокоэффективных технологий производства электрической и тепловой энергии.

Одной из таких задач является повышение эффективности энергетических установок с целью экономии органического топлива и наращивания энергетических мощностей. Наиболее

перспективными в этом отношении являются газотурбинные установки, с уходящими газами которых выбрасывается до 20% тепла .

Существуют несколько путей повышения к. п. д. газотурбинных двигателей , в числе которых:

Повышение температуры газа перед турбиной для ГТУ простого термодинамического цикла,

Применение регенерации тепла,

Использование тепла уходящих газов в бинарных циклах,

Создание ГТУ по сложной термодинамической схеме и т. д.

Наиболее перспективным направлением считается совместное использование газотурбинных и паротурбинных установок (ГТУ и ПТУ) с целью повышения их экономических и экологических характеристик.

Газотурбинные и созданные с их использованием комбинированные установки при технически достижимых в настоящее время параметрах обеспечивают существенное повышение эффективности производства тепловой и электроэнергии.

Широкое применение бинарных ПГУ, а также различных комбинированных схем при техническом перевооружении ТЭС позволит экономить до 20% топлива по сравнению с традиционными паротурбинными блоками.

По оценкам специалистов экономичность комбинированного парогазового цикла возрастает при повышении начальной температуры газов перед ГТУ и увеличении доли газотурбинной мощности. Немаловажное значение

имеет также то обстоятельство, что помимо выигрыша в экономичности такие системы требуют значительно меньших капитальных затрат, их удельная стоимость в 1.5 - 2 раза меньше, чем стоимость газо-мазутных паротурбинных блоков и ПГУ с минимальной газотурбинной мощностью .

По данным можно выделить три основных направления использования ГТУ и ПГУ в энергетике.

Первое, широко используемое в промышленно развитых странах, - применение ПГУ на крупных конденсационных ТЭС, работающих на газе. В этом случае наиболее эффективно использовать ПГУ утилизационного типа с большой долей газотурбинной мощности (рис. 1).

Применение ПГУ позволяет повысить на ТЭС эффективность сжигания топлива на ~ 11-15 % (ПГУ со сбросом газов в котёл), на ~ 25-30 % (бинарные ПГУ).

До недавнего времени широких работ по внедрению ПГУ в России не проводилось. Тем не менее, единичные образцы таких установок достаточно давно и успешно используются, например ПГУ с высоконапорным парогенератором (ВПГ) типа ВПГ-50 головного энергоблока ПГУ-120 и 3-х модернизированных энергоблоков с ВПГ-120 на филиале «ТЭЦ-2» ОАО «ТГК-1» ; ПГУ-200 (150) с ВПГ-450 на филиале «Невинномысская ГРЭС». На Краснодарской ГРЭС установлено три парогазовых энергоблока мощностью по 450 МВт. В состав энергоблока входят две газовые турбины мощностью по 150 МВт, два котла-утилизатора и паровая турбина, мощностью 170 МВт, к. п. д. такой установки составляет 52.5% . Дальнейшее

повышение к. п. д. ПГУ утилизационного типа возможно путем усовершенствования

газотурбинной установки и усложнения схемы парового процесса.

Рис. 1 - Схема ПГУ с котлом-утилизатором

Парогазовая установка с котлом-

утилизатором (рис. 1) включает в себя: 1-

компрессор; 2 - камеру сгорания; 3 - газовую

турбину; 4 - электрогенератор; 5 - котел-

утилизатор; 6 - паровую турбину; 7 - конденсатор; 8

Насос и 9 - деаэратор. В котле-утилизаторе топливо не дожигается, а вырабатываемый перегретый пар используется в паротурбинной установке.

Второе направление - использование газовых турбин для создания ПГУ - ТЭЦ и ГТУ -ТЭЦ. За последние годы было предложено множество вариантов технологических схем ПГУ -ТЭЦ. На ТЭЦ, работающих на газе целесообразно использовать теплофикационные ПГУ

утилизационного типа. Характерным примером

крупной ПГУ - ТЭЦ такого типа является Северо -Западная ТЭЦ в г. Санкт - Петербурге. Один блок ПГУ на этой ТЭЦ включает: две газовые турбины, мощностью по 150 МВт, два котла - утилизатора, паровую турбину. Основные показатели блока: электрическая мощность - 450 МВт, тепловая мощность - 407 МВт, удельный расход условного топлива на отпуск электроэнергии - 154.5 г у. т./(кВт. ч), удельный расход условного топлива на отпуск тепла - 40.6 кг у. т./ГДж, к. п. д. ТЭЦ по отпуску электрической энергии - 79.6%, тепловой энергии - 84.1%.

Третье направление - использование газовых турбин для создания ПГУ - ТЭЦ и ГТУ -ТЭЦ малой и средней мощности на базе котельных. ПГУ - ТЭЦ и ГТУ - ТЭЦ наилучших вариантов, создаваемые на базе котельных, обеспечивают к. п. д. по отпуску электрической энергии в теплофикационном режиме на уровне 76 - 79%.

Типовая парогазовая установка состоит из двух ГТУ, каждая со своим котлом-утилизатором, подающим вырабатываемый пар в одну общую паровую турбину.

Установка такого типа была разработана для Щекинской ГРЭС . ПГУ-490 была предназначена для выработки электрической энергии в базовом и на частичных режимах работы электростанции с отпуском тепла стороннему потребителю до 90 МВт при зимнем температурном графике. Принципиальная схема блока ПГУ-490 вынужденно ориентировалась на недостаток места при размещении котла-утилизатора и

паротурбинной установки в корпусах электростанции, что создавало определенные трудности для достижения оптимальных режимов комбинированной выработки тепла и электроэнергии.

При отсутствии ограничений по размещению установки, а также при использовании усовершенствованной ГТУ можно существенно повысить экономичность блока. В качестве такой усовершенствованной ПГУ в предлагается одновальная ПГУ-320 мощностью 300 МВт. Комплектной ГТУ для ПГУ-320 является одновальная ГТЭ-200, создание которой предполагается осуществить переходом на

двухопорный ротор, модернизацией системы охлаждения и других узлов ГТУ с целью повышения начальной температуры газа. Кроме ГТЭ-200 моноблок ПГУ-320 содержит ПТУ К-120-13 с трехцилиндровой турбиной, конденсатный насос, конденсатор пара уплотнений, подогреватель, питаемый греющим паром, подаваемым из отбора перед последней ступенью ПТ, а также котел-утилизатор двух давлений, содержащий восемь участков теплообмена, включая промежуточный перегреватель пара.

Для оценки эффективности установки был проведен термодинамический расчет, в результате которого был сделан вывод о том, что при работе в конденсационном режиме ПГУ-490 ЩГРЭС ее электрический к. п. д. может быть повышен на 2.5% и доведен до 50.1%.

Исследования теплофикационных

парогазовых установок показали, что экономические показатели ПГУ существенно зависят от структуры их тепловой схемы, выбор которой осуществляется в пользу установки, обеспечивающей минимальную температуру уходящих газов. Это объясняется тем, что уходящие газы являются основным источником потерь энергии, и для увеличения эффективности схемы их температуру необходимо уменьшать.

Модель одноконтурной теплофикационной ПГУ, представленная на рис. 2, включает в себя котел - утилизатор барабанного типа с естественной циркуляцией среды в испарительном контуре . По ходу газов в котле снизу вверх последовательно расположены поверхности нагрева:

пароперегреватель ПП, испаритель И, экономайзер Э и газовый перегреватель сетевой воды ГСП.

Рис. 2 - Тепловая схема одноконтурной ПГУ

Расчеты системы показали, что при изменении параметров свежего пара происходит перераспределение мощности, вырабатываемой ПГУ, между тепловой и электрической нагрузками. При росте параметров пара увеличивается выработка электрической и уменьшается выработка тепловой энергии. Это объясняется тем, что при увеличении параметров свежего пара уменьшается его выработка. При этом из-за снижения расхода пара при малом изменении его параметров в отборах уменьшается тепловая нагрузка подогревателя сетевой воды.

Двухконтурная ПГУ, также как и одноконтурная, состоит из двух газовых турбин, двух котлов-утилизаторов и одной паровой турбины (рис.3). Подогрев сетевой воды осуществляется в двух подогревателях ПГС и (при необходимости) в пиковом сетевом подогревателе.

По ходу газов в котле-утилизаторе

последовательно расположены следующие

поверхности нагрева: пароперегреватель высокого давления ППВД, испаритель высокого давления ИВД, экономайзер высокого давления ЭВД, пароперегреватель низкого давления ППНД,

испаритель низкого давления ИНД, газовый подогреватель низкого давления ГПНД, газовый подогреватель сетевой воды ГСП.

Рис. 3 - Принципиальная тепловая схема

двухконтурной ПГУ

Рис. 4 - Схема утилизации теплоты уходящих газов ГТУ

Кроме котла-утилизатора тепловая схема включает в себя паровую турбину, имеющую три цилиндра, два подогревателя сетевой воды ПСГ1 и ПСГ2, деаэратор Д и питательные насосы ПЭН. Отработавший пар турбины направлялся в ПСГ1. В подогреватель ПСГ2 подается пар из отбора турбины. Вся сетевая вода проходит через ПСГ1, затем часть воды направляется в ПСГ2, а другая часть после первой ступени подогрева - в ГСП, расположенный в конце газового тракта котла-утилизатора. Конденсат греющего пара ПСГ2 сливается в ПСГ1, а затем поступает в ГПНД и далее в деаэратор. Питательная вода после деаэратора частично поступает в экономайзер контура высокого давления, а частично - в барабан Б контура низкого давления. Пар из перегревателя контура низкого давления смешивается с основным потоком пара после цилиндра высокого давления (ЦВД) турбины.

Как показал сравнительный анализ, при использовании газа в качестве основного топлива применение утилизационных схем целесообразно, если соотношение тепловой и электрической энергии составляет 0.5 - 1.0, при соотношениях 1.5 и более, предпочтение отдается ПГУ по «сбросной» схеме.

Кроме подстройки паротурбинного цикла к циклу ГТУ, утилизация теплоты уходящих газов

ГТУ может осуществляться подачей в камеру сгорания ГТУ пара, вырабатываемого котлом-утилизатором, а также путем реализации регенеративного цикла .

Реализация регенеративного цикла (рис. 4) обеспечивает существенное повышение к. п. д. установки, в 1.33 раза, в том случае, если при создании ГТУ степень повышения давления выбрана в соответствии с намечаемой степенью регенерации. Такая схема включает в себя К -компрессор; Р - регенератор; КС - камера сгорания; ТК - турбина компрессора; СТ - силовая турбина; ЦК - центробежный компрессор. Если ГТУ выполнена без регенерации, а степень повышения давления л близка к оптимальному значению, то оснащение такой ГТУ регенератором не приводит к повышению ее к. п. д.

К. п. д. установки, осуществляющей подачу пара в камеру сгорания, повышается в 1.18 раз по сравнению с ГТУ, что позволяет снизить расход топливного газа, потребляемого газотурбинной установкой.

Сравнительный анализ показал, что наибольшая экономия топлива возможна при осуществлении регенеративного цикла ГТУ с высокой степенью регенерации, относительно невысоким значением степени повышения давления в компрессоре л = 3 и с небольшими потерями продуктов сгорания. Однако в большинстве отечественных ТКА в качестве привода использованы авиационные и судовые газотурбинные двигатели с высокой степенью повышения давления, и в этом случае утилизация теплоты уходящих газов эффективнее в паротурбинном блоке. Установка с подачей пара в камеру сгорания конструктивно наиболее проста, но менее эффективна.

Одним из способов достижения экономии газа и решения экологических проблем является применение на КС парогазовых установок. В исследовательских разработках рассматриваются два альтернативных варианта использования пара, полученного при утилизации теплоты выхлопных газов ГТУ: ПГУ с приводом от паровой турбины нагнетателя природного газа и от паровой турбины электрогенератора. Принципиальное различие этих вариантов заключается в том, что в случае ПГУ с нагнетателем не только утилизируется теплота выхлопных газов ГПА, но и один ГПА заменяется на паротурбинный перекачивающий агрегат, а при ПГУ с электрогенератором число ГПА сохраняется, а за счет утилизируемой теплоты вырабатывается электроэнергия специальным паротурбинным агрегатом . Выполненный анализ показал, что ПГУ с приводом нагнетателя природного газа обеспечивали лучшие технико-экономические показатели.

В случае создания на базе КС парогазовой установки с котлом утилизатором , ГТУ используется для привода нагнетателя, а паросиловая установка (ПСУ) - для выработки электроэнергии, при этом температура отходящих газов за котлом - утилизатором составляет 1400С.

С целью повышения эффективности использования органического топлива в децентрализованных системах теплоснабжения возможна реконструкция отопительных котельных с размещением в них газотурбинных установок (ГТУ) небольшой мощности и утилизацией продуктов сгорания в топках существующих котлов . При этом электрическая мощность ГТУ зависит от режимов работы по тепловому или электрическому графикам нагрузок, а также от экономических факторов.

Оценить эффективность реконструкции котельной можно при сравнении двух вариантов : 1 - исходный (существующая котельная), 2 -альтернативный, с использованием ГТУ. Наибольший эффект был получен при электрической мощности ГТУ, равной

максимальной нагрузке района потребления.

Сравнительный анализ ГТУ с КУ, вырабатывающим пар в количестве 0.144 кг/кг с. г., конденсационным ТУ и ГТУ без КУ и с ТУ сухого теплообмена показал следующее: полезная

электрическая мощность - 1.29, расход природного газа - 1.27, отпуск тепла - 1.29 (соответственно 12650 и 9780 кДж/м3 природного газа). Таким образом, относительный прирост мощности ГТУ при вводе пара от КУ составил 29%, а расход дополнительного природного газа - 27%.

Согласно данным эксплуатационных испытаний температура уходящих газов в водогрейных котлах составляет 180 - 2300С, что создает благоприятные условия для утилизации теплоты газов с помощью конденсационных теплоутилизаторов (ТУ) . В ТУ, которые

используются для предварительного подогрева сетевой воды перед водогрейными котлами , осуществляется теплообмен с конденсацией водяных паров, содержащихся в уходящих газах, а нагрев воды собственно в котле происходит уже в режиме “сухого” теплообмена.

По данным наряду с экономией топлива использование ТУ обеспечивает также экономию электроэнергии. Объясняется это тем, что при вводе в котел дополнительного потока циркуляционной воды для сохранения расчетного расхода через котел необходимо часть обратной воды теплосети в количестве, равном рециркуляционному расходу, перепускать из обратной трубы в подающую.

При комплектовании электростанций из отдельных энергоблоков с газотурбинным приводом

электрогенераторов существует несколько вариантов утилизации теплоты выхлопных газов, например, с помощью утилизационного

теплообменника (УТО) для нагрева воды, или с использованием котла-утилизатора и

паротурбогенератора для увеличения выработки электроэнергии . Анализ работы станции с учетом утилизации теплоты с помощью УТО показал существенное увеличение коэффициента использования теплоты, в некоторых случаях в 2 раза и более, а экспериментальные исследования энергоблока ЭМ-25/11 с двигателем НК-37 позволили сделать следующий вывод. В зависимости от конкретных условий годовой отпуск утилизируемой теплоты может колебаться в пределах от 210 до 480 тыс. ГДж, а реальная экономия газа составила от 7 до 17 тыс. м3.

Литература

1. В.М. Масленников, Теплоэнергетика, 3, 39-41 (2000).

2. В.И. Романов, В.А. Кривуца, Теплоэнергетика, 4, 27-30 (1996).

3. Л.В. Арсеньев, В.Г. Тырышкин, Комбинированные установки с газовыми турбинами. Л.: Машиностроение, 1982, 407 с.

4. В.И. Длугосельский, А.С. Земцов, Теплоэнергетика, 12, 3-7 (2000).

5. Б.М. Трояновский, А.Д. Трухний, В.Г. Грибин, Теплоэнергетика, 8, 9-13 (1998).

6. А. Д. Цой, Промышленная энергетика, 4, 50-52 (2000).

7. А.Д. Цой, А.В. Клевцов, А.В. Корягин, Промышленная энергетика, 12, 25-32 (1997).

8. В.И. Евено, Теплоэнергетика, 12, 48-50 (1998).

9. Н.И. Серебрянников, Э.И. Тапелев, А.К. Маханьков, Энергосбережение и водоподготовка, 2, 3-11 (1998).

10. Г.Д. Баринберг, В.И. Длугосельский, Теплоэнергетика, 1, 16-20 (1998)

11. А.П. Берсенев, Теплоэнергетика, 5, 51-53 (1998).

12. Е.Н. Бухаркин, Промышленная энергетика, 7, 34-37 (1998).

13. В.И. Доброхотов, Теплоэнергетика, 1, 2-8 (2000).

14. А.С. Попов, Е.Е. Новгородский, Б.А. Пермяков, Промышленная энергетика, 1, 34-35 (1997).

15. И.В. Белоусенко, Промышленная энергетика, 5, 53-55 (2000).

16. В.В. Гетман, Н.В. Лежнева, Вестник Казан. технол. Ун-та, 18, 174-179 (2011).

17. Н.В. Лежнева, В.И. Елизаров, В.В. Гетман, Вестник Казан. технол. Ун-та, 17, 162-167 (2012).

© В. В. Гетман - канд. техн. наук, доц. каф. автоматизации технологических процессов и производств ФГБОУ ВПО «КНИТУ», 1ега151@уаМех; Н. В. Лежнева - канд. техн. наук, доц. каф. автоматизации технологических процессов и производств ФГБОУ ВПО «КНИТУ», [email protected].

Утилизация тепла отходящих дымовых газов

Дымовые газы, покидающие рабочее пространство печей, имеют весьма высокую температуру и поэтому уносят с собой значительное количество тепла. В мартеновских печах, например, из рабочего пространства с дымовыми газами уносится около 80 % всего тепла поданного в рабочее пространство, в нагревательных печах около 60 %. Из рабочего пространства печей дымовые газы уносят с собой тем больше тепла, чем выше их температура и чем ниже коэффициент использования тепла в печи. В связи с этим целесообразно обеспечивать утилизацию тепла отходящих дымовых газов, которая может быть выполнена принципиально двумя методами: с возвратом части тепла, отобранного у дымовых газов, обратно в печь и без возврата этого тепла в печь. Для осуществления первого метода необходимо тепло, отобранное у дыма, передать идущим в печь газу и воздуху (или только воздуху). Для достижения этой цели широко используют теплообменники рекуперативного и регенеративного типов, применение которых позволяет повысить к. п. д. печного агрегата, увеличить температуру горения и сэкономить топливо. При втором методе утилизации, тепло отходящих дымовых газов используется в теплосиловых котельных и турбинных установках, чем достигается существенная экономия топлива.

В отдельных случаях оба описанных метода утилизации тепла отходящих дымовых газов используются одновременно. Это делается тогда, когда температура дымовых газов после теплообменников регенеративного или рекуперативного типа остается достаточно высокой и целесообразна дальнейшая утилизация тепла в теплосиловых установках. Так, например, в мартеновских печах температура дымовых газов после регенераторов составляет 750-800 °С, поэтому их повторно используют в котлах-утилизаторах.

Рассмотрим подробнее вопрос утилизации тепла отходящих дымовых газов с возвратом части их тепла в печь.

Следует, прежде всего, отметить, что единица тепла, отобранная у дыма и вносимая в печь воздухом или газом (единица физического тепла), оказывается значительно ценнее единицы тепла, полученной в печи в результате сгорания топлива (единицы химического тепла), так как тепло подогретого воздуха (газа) не влечет за собой потерь тепла с дымовыми газами. Ценность единицы физического тепла тем больше, чем ниже коэффициент использования топлива и чем выше температура отходящих дымовых газов.

Для нормальной работы печи следует каждый час в рабочее пространство подавать необходимое количество тепла. В это количество тепла входит не только тепло топлива , но и тепло подогретого воздуха или газа , т. е. .

Ясно, что при = const увеличение позволит уменьшить . Иными словами, утилизация тепла отходящих дымовых газов позволяет достичь экономии топлива, которая зависит от степени утилизации тепла дымовых газов


где - соответственно энтальпия подогретого воздуха и отходящих из рабочего пространства дымовых газов, кВт, или кДж/период.

Степень утилизации тепла может быть также названа к.п.д. рекуператора (регенератора), %

Зная величину степени утилизации тепла, можно определить экономию топлива по следующему выражению:

где I"д, Iд - соответственно энтальпия дымовых газов при температуре горения и покидающих печь.

Снижение расхода топлива в результате использования тепла отходящих дымовых газов обычно дает значительный экономический эффект и является одним из путей снижения затрат на нагрев металла в промышленных печах.

Кроме экономии топлива, применение подогрева воздуха (газа) сопровождается увеличением калориметрической температуры горения , что может являться основной целью рекуперации при отоплении печей топливом с низкой теплотой сгорания.

Повышение при приводит к увеличению температуры горения. Если необходимо обеспечить определенную величину , то повышение температуры подогрева воздуха (газа), приводит к уменьшению величины , т. е. к снижению доли в топливной смеси газа с высокой теплотой сгорания.

Поскольку утилизация тепла позволяет значительно экономить топливо целесообразно стремиться к максимально возможной, экономически оправданной степени утилизации. Однако необходимо сразу заметить, что утилизация не может быть полной, т. е. всегда . Это объясняется тем, что увеличение поверхности нагрева рационально только до определенных пределов, после которых оно уже приводит к очень незначительному выигрышу в экономии тепла.

Тепло дымовых газов, уходящих из печей, кроме подогрева воздуха и газообразного топлива, может быть использовано в котлах-утилизаторах для выработки водяного пара. В то время как подогретые газ и воздух используются в самом печном агрегате, пар направляется внешним потребителям (для производственных и энергетических нужд).

Во всех случаях следует стремиться к наибольшей регенерации тепла, т. е. к возвращению его в рабочее пространство печи в виде тепла нагретых компонентов горения (газообразного топлива и воздуха). В самом деле, увеличение регенерации тепла ведет к сокращению расхода топлива и к интенсификации и улучшению технологического процесса. Однако наличие рекуператоров или регенераторов не всегда исключает возможность установки котлов-утилизаторов. В первую же очередь котлы-утилизаторы нашли применение в крупных печах с относительно высокой температурой отходящих дымовых газов: в мартеновских сталеплавильных печах, в медеплавильных отражательных печах, во вращающихся печах для обжига цементного клинкера, при сухом способе производства цемента и т. д.

Рис. 5.

1 - пароперегреватель; 2 - трубная поверхность; 3 - дымосос.

Тепло дымовых газов, отходящих от регенераторов мартеновских печей с температурой 500 -- 650 °С, используется в газотрубных котлах-утилизаторах с естественной циркуляцией рабочего тела. Поверхность нагрева газотрубных котлов состоит из дымогарных труб, внутри которых проходят дымовые газы со скоростью примерно 20 м/сек. Тепло от газов к поверхности нагрева передается путем конвекции, а потому увеличение скорости повышает теплопередачу. Газотрубные котлы просты в эксплуатации, при монтаже не требуют обмуровки и каркасов и обладают высокой газоплотностью.

На рис. 5 показан газотрубный котел Таганрогского завода средней производительности D ср = 5,2 т/ч с расчетом на пропуск дымовых газов до 40000 м 3 /ч. Давление пара, вырабатываемого котлом, равно 0,8 Мн/м 2 ; температура 250 °С. Температура газов до котла 600 °С, за котлом 200 - 250 °С.

В котлах с принудительной циркуляцией поверхность нагрева составляется из змеевиков, расположение которых не ограничивается условиями естественной циркуляции, и поэтому такие котлы компактны. Змеевиковые поверхности изготовляются из труб малого диаметра, например d = 32Ч3 мм, что облегчает вес котла. При многократной циркуляции, когда кратность циркуляции составляет 5 - 18, скорость воды в трубках значительна, не менее 1 м/сек, вследствие чего в змеевиках уменьшается выпадение из воды растворенных солей, а кристаллическая накипь смывается. Тем не менее котлы должны питаться водой, химически очищенной при помощи катионитовых фильтров и других способов водоподготовки, соответствующей нормам питательной воды для обычных паровых котлов.

Рис. 6.

1 - экономайзерная поверхность; 2 - испарительная поверхность; 3 - пароперегреватель; 4 - барабан-коллектор; 5 - циркуляционный насос; 6 - шламоуловитель; 7 -- дымосос.

На рис. 6 дана схема размещения змеевиковых поверхностей нагрева в вертикальных дымоходах. Движение пароводяной смеси осуществляется циркуляционным насосом. Конструкции котлов подобного типа разработаны Центроэнергочерметом и Гипромезом и изготовляются на расходы дымовых газов до 50 - 125 тыс. м 3 /ч со средней паропроизводительностью от 5 до 18 т/ч.

Стоимость пара составляет 0,4 - 0,5 руб/т вместо 1,2 - 2 руб/т у пара, отобранного из паровых турбин ТЭЦ и 2 - 3 руб/т у пара от промышленных котельных. Стоимость пара составляется из затрат на энергию для привода дымососов, расходов на приготовление воды, амортизацию, ремонт и обслуживание. Скорость газов в котле составляет от 5 до 10 м/сек, что обеспечивает хорошую теплопередачу. Аэродинамическое сопротивление газового тракта составляет 0,5 - 1,5 кн/м 2 , поэтому агрегат должен иметь искусственную тягу от дымососа. Усиление тяги, которым сопровождается установка котлов-утилизаторов, как правило, улучшает работу мартеновских печей. Подобные котлы получили распространение на заводах, но для их хорошей работы требуется защита поверхностей нагрева от заноса пылью и частицами шлака и систематическая очистка поверхностей нагрева от уноса посредством обдувки перегретым паром, промывки водой (при остановках котла), вибрационным путем и др.

Рис. 7.

Для использования тепла дымовых газов, отходящих от медеплавильных отражательных печей, устанавливаются водотрубные котлы с естественной циркуляцией (рис. 7). Дымовые газы в этом случае имеют очень высокую температуру (1100 - 1250 °С) и загрязнены пылью в количестве до 100 - 200 г/м 3 , причем часть пыли имеет высокие абразивные (истирающие) свойства, другая часть находится в размягченном состоянии и может шлаковать поверхность нагрева котла. Именно большая запыленность газов и заставляет пока отказываться от регенерации тепла в этих печах и ограничиваться использованием дымовых газов в котлах-утилизаторах.

Передача тепла от газов к экранным испарительным поверхностям протекает очень интенсивно, благодаря чему обеспечивается интенсивное парообразование частицы шлака, охлаждаясь, гранулируются и выпадают в шлаковую воронку, чем исключается шлакование конвективной поверхности нагрева котла. Установка подобных котлов для использования газов с относительно невысокой температурой (500 -- 700 °С) нецелесообразна из-за слабой теплопередачи лучеиспусканием.

В случае оборудования высокотемпературных печей металлическими рекуператорами котлы-утилизаторы целесообразно устанавливать непосредственно за рабочими камерами печей. В этом случае в котле температура дымовых газов понижается до 1000 - 1100 °С. С такой температурой они уже могут быть направлены в жароупорную секцию рекуператора. Если газы несут много пыли, то котел-утилизатор устраивается в виде экранного котла-шлакогранулятора, что обеспечивает сепарацию уноса из газов и облегчает работу рекуператора.


Владельцы патента RU 2606296:

Изобретение относится к теплоэнергетике и может найти применение на любом предприятии, эксплуатирующем котлы на углеводородном топливе.

Известны серийно выпускаемые Костромским калориферным заводом калориферы типа КСк (Кудинов А.А. Энергосбережение в теплогенерирующих установках. - Ульяновск: УлГТУ, 2000. - 139, стр. 33), состоящие из газоводяного поверхностного теплоутилизатора, поверхность теплообмена которого выполнена из оребренных биметаллических трубок, сетчатого фильтра, распределительного клапана, каплеуловителя и гидропневматического обдувочного устройства.

Калориферы типа КСк работают следующим образом. Дымовые газы попадают на распределительный клапан, который делит их на два потока, основной поток газа направляется через сетчатый фильтр в теплоутилизатор, второй - по обводной линии газохода. В теплоутилизаторе водяные пары, содержащиеся в дымовых газах, конденсируются на оребренных трубках, нагревая текущую в них воду. Образующийся конденсат собирается в поддоне и подается насосами в схему подпитки теплосети. Нагретая в теплоутилизаторе вода подается потребителю. На выходе из теплоутилизатора осушенные дымовые газы смешиваются с исходными дымовыми газами из обводной линии газохода и направляются через дымосос в дымовую трубу.

Для работы теплоутилизатора в режиме конденсации всей его конвективной части требуется, чтобы температура нагрева воды в конвективном пакете не превышала 50°С. Для использования такой воды в системах отопления ее нужно дополнительно догревать.

Для предотвращения конденсации остаточных водяных паров дымовых газов в газоходах и дымовой трубе, часть исходных газов через обводной канал подмешиваются к осушенным дымовым газам, повышая их температуру. При таком подмесе увеличивается и содержание водяных паров в уходящих дымовых газах, снижая эффективность утилизации тепла.

Известен теплоутилизатор (RU 2323384 С1, МПК F22B 1/18 (2006.01), опубл. 27.04.2008), содержащий контактный теплообменник, каплеуловитель, газо-газовый теплообменник, включенный по схеме прямотока, газоходы, трубопроводы, насос, датчики температуры, клапаны-регуляторы. По ходу оборотной воды контактного теплообменника последовательно расположены водо-водяной теплообменник и водовоздушный теплообменник с обводным каналом по ходу воздуха.

Известен способ работы этого теплоутилизатора. Уходящие газы по газоходу поступают на вход газо-газового теплообменника, последовательно проходя три его секции, затем на вход контактного теплообменника, где, проходя через насадку, омываемую оборотной водой, охлаждаются ниже точки росы, отдавая явное и скрытое тепло оборотной воде. Далее охлажденные и влажные газы освобождаются от большей части унесенной потоком жидкой воды в каплеуловителе, нагреваются и подсушиваются, по меньшей мере, в одной секции газо-газового теплообменника, дымососом направляются в трубу и выбрасываются в атмосферу. Одновременно нагретая оборотная вода из поддона контактного теплообменника насосом подается в водо-водяной теплообменник, где нагревает холодную воду из трубопровода. Нагретая в теплообменнике вода поступает на нужды технологического и бытового горячего водоснабжения или в низкотемпературный отопительный контур.

Далее оборотная вода поступает в водовоздушный теплообменник, нагревает, по меньшей мере, часть дутьевого воздуха, поступающего из-за пределов помещения по воздуховоду, охлаждаясь до минимально возможной температуры, и поступает в контактный теплообменник через водораспределитель, где отбирает тепло от газов, попутно промывая их от взвешенных частиц, и поглощает часть оксидов азота и серы. Нагретый воздух из теплообменника дутьевым вентилятором подается в штатный воздухоподогреватель или непосредственно в топку. Оборотная вода по необходимости фильтруется и обрабатывается известными способами.

Для осуществления такого способа необходима система регулирования вследствие использования утилизируемого тепла для целей горячего водоснабжения из-за непостоянства суточного графика потребления горячей воды.

Нагретая в теплообменнике вода, поступающая на нужды горячего водоснабжения или в низкотемпературный отопительный контур, требует ее доведения до необходимой температуры, так как не может быть нагрета в теплообменнике выше температуры воды оборотного контура, которая определяется температурой насыщения водяных паров в дымовых газах. Низкий нагрев воздуха в водовоздушном теплообменнике не позволяет использовать этот воздух для отопления помещений.

Наиболее близкими к заявляемому изобретению являются устройство и способ утилизации тепла дымовых газов (RU 2436011 С1, МПК F22B 1/18 (2006.01), опубл. 10.12.2011).

Устройство утилизации тепла дымовых газов содержит газо-газовый поверхностный пластинчатый теплообменник, выполненный по схеме противотока, поверхностный газовоздушный пластинчатый конденсатор, инерционный каплеуловитель, газоходы, дымосос, воздуховоды, вентиляторы и трубопровод.

Исходные дымовые газы охлаждаются в газо-газовом поверхностном пластинчатом теплообменнике, нагревая осушенные дымовые газы. Греющая и нагреваемая среда движутся противотоком. При этом происходит глубокое охлаждение влажных дымовых газов до температуры, близкой к точке росы водяных паров. Далее содержащиеся в дымовых газах водяные пары конденсируются в газовоздушном поверхностном пластинчатом теплообменнике - конденсаторе, нагревая воздух. Нагретый воздух используется для отопления помещений и покрытия потребности процесса горения. Конденсат после дополнительной обработки используют для восполнения потерь в теплосети или паротурбинном цикле. Для исключения конденсации остаточных водяных паров, уносимых потоком из конденсатора, перед дополнительным дымососом подмешивается часть подогретых осушенных дымовых газов. Осушенные дымовые газы подаются дымососом в описанный выше подогреватель, где нагреваются для предотвращения возможной конденсации водяных паров в газоходах и дымовой трубе и направляются в дымовую трубу.

Недостатками этого способа является то, что утилизируется преимущественно скрытая теплота конденсации водяных паров, содержащихся в дымовых газах. Если рекуперативный теплообменник охлаждает исходные дымовые газы до температуры, близкой к точке росы водяных паров, то нагрев уходящих осушенных дымовых газов будет избыточным, что снижает эффективность утилизации. Недостатком является и использование для нагрева только одной среды - воздуха.

Задачей изобретения является повышение эффективности утилизации тепла дымовых газов за счет использования скрытого тепла конденсации водяных паров и повышенной температуры самих дымовых газов.

В предложенном способе глубокой утилизации тепла дымовых газов, также как в прототипе, дымовые газы предварительно охлаждают в газо-газовом поверхностном пластинчатом теплообменнике, нагревая осушенные дымовые газы, конденсируют водяные пары, содержащиеся в дымовых газах в конденсаторе, нагревая воздух.

Согласно изобретению между теплообменником и конденсатором дымовые газы доохлаждают до температуры, близкой к точке росы водяных паров, нагревая воду.

Газовые котлы имеют высокую температуру уходящих дымовых газов (130°С для больших энергетических котлов, 150°С-170°С для малых котлов). Для охлаждения дымовых газов перед конденсацией используют два устройства: рекуперативный газо-газовый теплообменник и утилизационный водоподогреватель.

Исходные дымовые газы предварительно охлаждают в газо-газовом поверхностном пластинчатом теплообменнике, нагревая осушенные дымовые газы на 30-40°С выше, чем температура насыщения содержащихся в них водяных паров, для создания запаса по температуре при возможном охлаждении дымовых газов в трубе. Это позволяет уменьшить площадь теплообмена рекуперативного теплообменника по сравнению с прототипом и полезно использовать оставшееся тепло дымовых газов.

Существенным отличием является использование контактного газоводяного водоподогревателя для окончательного охлаждения влажных дымовых газов до температуры, близкой к точке росы водяных паров. На входе в водоподогреватель дымовые газы имеют достаточно высокую температуру (130°С-90°С), что позволяет нагревать воду до 50°С-65°С с частичным ее испарением. На выходе из контактного газоводяного водоподогревателя дымовые газы имеют температуру близкую к точке росы содержащихся в них водяных паров, что повышает эффективность использования поверхности теплообмена в конденсаторе, исключает образование сухих зон конденсатора и повышает коэффициент теплопередачи.

Способ утилизации тепла дымовых газов изображен на фиг.1.

В таблице 1 приведены результаты проверочного расчета варианта установки для котла на природном газе мощностью 11 МВт.

Способ глубокой утилизации тепла дымовых газов осуществляют следующим образом. Исходные дымовые газы 1 предварительно охлаждают в газо-газовом поверхностном пластинчатом теплообменнике 2, нагревая осушенные дымовые газы. Далее дымовые газы 3 окончательно охлаждают в контактном газоводяном водоподогревателе 4 до температуры, близкой к точке росы водяных паров, разбрызгивая воду, в качестве которой целесообразно использовать полученный в конденсаторе конденсат. При этом часть воды испаряется, повышая влагосодержание дымовых газов, а остальная нагревается до этой же температуры. Содержащиеся в дымовых газах 5 водяные пары конденсируют в газовоздушном поверхностном пластинчатом теплообменнике - конденсаторе 6 с каплеуловителем 7, нагревая воздух. Конденсат 8 подается для подогрева в контактный газоводяной водоподогреватель 4. Теплота конденсации используется для подогрева холодного воздуха, который подают вентиляторами 9 из окружающей среды по воздуховоду 10. Нагретый воздух 11 направляют в производственное помещение котельного цеха для его вентиляции и отопления. Из этого помещения воздух подают в котел для обеспечения процесса горения. Осушенные дымовые газы 12 дымососом 13 подают в газо-газовый поверхностный пластинчатый теплообменник 2 для подогрева и направляют в дымовую трубу 14.

Для исключения конденсации остаточных водяных паров, уносимых потоком из конденсатора, перед дымососом 13 подмешивают часть подогретых осушенных дымовых газов 15 (до 10%), величина которой первоначально настраивается заслонкой 16.

Регулирование температуры нагреваемого воздуха 11 осуществляют изменением расхода осушаемых дымовых газов 1 или изменением расхода воздуха, при помощи регулирования числа оборотов дымососа 13 или вентиляторов 9 в зависимости от температуры наружного воздуха.

Теплообменник 2 и конденсатор 6 представляют собой поверхностные пластинчатые теплообменники, выполненные из унифицированных модульных пакетов, которые скомпонованы таким образом, чтобы движение теплоносителей осуществлялось противотоком. В зависимости от объема осушаемых дымовых газов, подогреватель и конденсатор формируются из рассчитываемого количества пакетов. Водоподогреватель 4 представляет собой контактный газоводяной теплообменник, обеспечивающий дополнительное охлаждение дымовых газов и нагрев воды. Нагретая вода 17 после дополнительной обработки используется для восполнения потерь в теплосети или паротурбинном цикле. Блок 9 формируется из нескольких вентиляторов для изменения расхода подогреваемого воздуха.

В таблице 1 приведены результаты поверочного расчета варианта исполнения установки для котла на природном газе мощностью 11 МВт. Расчеты проводились для температуры наружного воздуха -20°С. Расчет показывает, что использование контактного газоводяного водоподогревателя 4 приводит к исчезновению сухой зоны в конденсаторе 6, интенсифицирует теплообмен и увеличивает мощность установки. Процент утилизированного тепла увеличивается с 14,52 до 15,4%, при этом температура точки росы водяных паров в осушенных дымовых газах снижается до 17°С. Примерно 2% тепловой мощности не утилизируется, а используется для рекуперации - нагрева осушенных дымовых газов до температуры 70°С.

Способ глубокой утилизации тепла дымовых газов, по которому дымовые газы предварительно охлаждают в газо-газовом поверхностном пластинчатом теплообменнике, нагревая осушенные дымовые газы, доохлаждают в водоподогревателе до температуры, близкой к точке росы водяных паров, нагревая воду, конденсируют водяные пары, содержащиеся в дымовых газах в конденсаторе, нагревая воздух, отличающийся тем, что между теплообменником и конденсатором установлен поверхностный трубчатый газоводяной водоподогреватель для охлаждения влажных дымовых газов и нагрева воды, при этом основная утилизация тепла происходит в конденсаторе при нагреве воздуха, а дополнительная - в водоподогревателе.

Похожие патенты:

Изобретение относится к нефтехимическому машиностроению и может быть использовано для крекинга мазута, а также для нагрева технологических сред (например, нефти, нефтяной эмульсии, газа, их смесей) и для других технологических процессов, требующих интенсивного подвода тепла.

Изобретение относится к области теплоэнергетики и может быть использовано в системах подогрева и кондиционирования воздуха. Изобретение заключается в том, что соединение теплообменных оребренных трубок в ряду и рядов между собой выполнено последовательно по одной трубке в ходу в одну ветвь, причем смежные теплообменные трубки в ряду соединены между собой последовательно межтрубными переходами в форме крутозагнутых отводов и снабжены легкосъемными ремонтно-защитными пробками, количество последовательно подключенных трубок в ряду и общее количество ходов во всех рядах выбрано в зависимости от фактических параметров существующей тепловой сети и определено гидравлической характеристикой водяного калорифера.

Электрический радиатор, использующий вычислительные процессоры в качестве источника тепла. Этот радиатор для бытовых и производственных помещений, использующий вычислительные процессоры в качестве источников тепла, содержит нагреваемый корпус, который осуществляет теплопередачу между источником тепла и окружающим воздухом, количество Q процессоров, распределенных на количестве Р печатных плат, образующих источник тепла радиатора и мощное средство, выполняющее вычисления посредством внешних информационных систем, интерфейс человек-машина, позволяющий контролировать вычислительную и тепловую мощность, выдаваемую радиатором, стабилизированный источник питания для различных электронных компонентов, сетевой интерфейс, позволяющий соединять радиатор с внешними сетями.

Изобретение предназначено для осуществления реакций парового риформинга и может быть использовано в химической промышленности. Теплообменный реактор содержит множество байонетных труб (4), подвешенных к верхнему своду (2), простирающихся до уровня нижнего дна (3) и заключенных в кожух (1), содержащий впускной (Е) и выпускной (S) патрубки для дымовых газов.

Изобретение предлагает систему и способ парогазовой конверсии. Способ парогазовой когенерации на основе газификации и метанирования биомассы включает: 1) газификацию биомассы путем смешивания кислорода и водяного пара, полученных из воздухоразделительной установки, с биомассой, транспортировку образующейся в результате смеси через сопло в газификатор, газификацию биомассы при температуре 1500-1800°С и давлении 1-3 МПа с получением неочищенного газифицированного газа и транспортировку перегретого пара, имеющего давление 5-6 МПа, полученного в результате целесообразной утилизации тепла, к паровой турбине; 2) конверсию и очистку: в соответствии с требованиями реакции метанирования корректировку отношения водород/углерод неочищенного газифицированного газа, образованного на стадии 1), до 3:1 с использованием реакции конверсии и извлечение при низкой температуре неочищенного газифицированного газа с использованием метанола для десульфуризации и декарбонизации, в результате чего получают очищенный сингаз; 3) проведение метанирования: введение очищенного сингаза стадии 2) в секцию метанирования, состоящую из секции первичного метанирования и секции вторичного метанирования, причем секция первичного метанирования содержит первый реактор первичного метанирования и второй реактор первичного метанирования, соединенные последовательно; предоставление возможности части технологического газа из второго реактора первичного метанирования вернуться к входу первого реактора первичного метанирования для смешивания со свежим подаваемым газом и далее возможности войти в первый реактор первичного метанирования, так что концентрация реагентов на входе первого реактора первичного метанирования уменьшается и температура слоя катализатора регулируется технологическим газом; введение сингаза после первичного метанирования в секцию вторичного метанирования, содержащую первый реактор вторичного метанирования и второй реактор вторичного метанирования, соединенные последовательно, где небольшое количество непрореагировавшего СО и большое количество CO2 превращается в CH4, и транспортировку перегретого пара промежуточного давления, образованного в секции метанирования, к паровой турбине; и 4) концентрирование метана: концентрирование метана синтетического природного газа, содержащего следовые количества азота и водяного пара, полученного на стадии 3), с помощью адсорбции при переменном давлении, так что молярная концентрация метана достигает 96% и теплотворная способность синтетического природного газа достигает 8256 ккал/Nм3.

Изобретение относится к теплоэнергетике. Способ глубокой утилизации тепла дымовых газов включает предварительное охлаждение дымовых газов в газо-газовом поверхностном пластинчатом теплообменнике, нагревая противотоком осушенные дымовые газы, для создания температурного запаса, предотвращающего конденсацию остаточных водяных паров в дымовой трубе. Дальнейшее охлаждение дымовых газов до температуры, близкой к точке росы водяных паров, осуществляется в контактном газоводяном водоподогревателе, который нагревает воду. Охлажденные влажные дымовые газы подают в газовоздушный поверхностный пластинчатый теплообменник - конденсатор, где конденсируются содержащиеся в дымовых газах водяные пары, нагревая воздух. Осушенные дымовые газы подают дополнительным дымососом в газо-газовый поверхностный пластинчатый теплообменник, где нагревают для предотвращения возможной конденсации водяных паров в газоходах и дымовой трубе и направляются в дымовую трубу. Технический результат: повышение эффективности утилизации тепла дымовых газов за счет использования скрытого тепла конденсации водяных паров и повышенной температуры самих дымовых газов. 1 ил., 1 табл.

Похожие публикации