Экспертное сообщество по ремонту ванных комнат

Типы ядерных превращений, альфа и бета-распад. Общая схема реакции α-распада

Энциклопедичный YouTube

    1 / 3

    ✪ Виды распада

    ✪ РАДИОАКТИВНОСТЬ физика

    ✪ Альфа- и Бета- распады

    Субтитры

    Все, что мы до сих пор обсуждали, изучая химию, основывалось на стабильности электронов, и на том, где они, скорее всего, находятся в устойчивых оболочках. Но если продолжить изучение атома, выяснится, что в атоме находятся и действуют не только электроны. Взаимодействия происходят в самом ядре, ему свойственна нестабильность, которую оно стремится ослабить. Это и станет темой нашего видеоурока. На самом деле, изучение этих механизмов не входит в программу по химии для первокурсников, но лишними эти знания точно не будут. Когда мы будем изучать сильные ядерные взаимодействия, квантовую физику и тому подобное, мы еще подробно рассмотрим, почему протоны, нейтроны и кварки, из которых состоят ядра атомов, взаимодействуют именно таким образом. А сейчас представим, каким образом ядро вообще может распадаться.. Начнем с пучка протонов. Я нарисую несколько. Это протоны, а тут будут нейтроны. Нарисую их каким-нибудь подходящим цветом. Серый цвет – то, что надо. Итак, вот они, мои нейтроны. Сколько у меня протонов? У меня 1, 2, 3, 4, 5, 6, 7, 8. Значит, будет 1, 2, 3, 4, 5, 6, 7, 8, 9 нейтронов. Допустим, это ядро атома. Это, кстати, самый первый ролик об атомном ядре. Вообще, нарисовать атом, на самом деле, очень трудно, ведь у него нет четко определенных границ. Электрон в любой момент времени может находиться где угодно. Но если говорить о месте нахождения электрона 90% времени, то им будет радиус или диаметр атома. Мы уже давно знаем, что ядро - это бесконечно малая часть объема той сферы, где электрон находится 90% времени. А из этого следует что практически все, что мы видим вокруг, это пустое пространство. Все это - пустое пространство. Я говорю об этом, потому что это бесконечно малое пятнышко, даже несмотря на то, что оно является очень малой долей объема атома, его масса составляет почти всю массу атома - это очень важно. Это не атомы, это не электроны. Мы проникаем в ядро. Оказывается, иногда ядро бывает нестабильно и стремится достичь более устойчивой конфигурации. Мы не будем углубляться в детали причин неустойчивости ядра. Но, просто скажу, что иногда оно испускает так, называемые альфа-частицы. Это явление называется альфа-распадом. Запишем. Альфа-распад. Ядро испускает альфа-частицу, звучит фантастично. Это просто совокупность нейтронов и протонов. А альфа-частица – это два нейтрона и два протона. Возможно, они чувствуют, что они здесь не помещаются, вот эти, например. И происходит эмиссия. Они покидают ядро. Рассмотрим, что происходит с атомом, когда случается что-то подобное. Возьмем случайный элемент, назовем его Е. У него есть P - протоны. Нарисую буквы таким же цветом, что и протоны. Итак, вот - протоны. Естественно, у элемента Е есть массовое число атома, равное сумме протонов и нейтронов. Нейтроны серые. Происходит альфа-распад, что же будет с этим элементом? Что же будет с этим элементом? Количество протонов уменьшается на два. Поэтому количество протонов составит р минус 2. И число нейтронов тоже уменьшается на два. Итак, здесь у нас р минус 2, плюс наши нейтроны минус 2, то есть, всего минус 4. Масса уменьшается на четыре, и прежний элемент превращается в новый. Помните, что элементы определяются количеством протонов. При альфа-распаде вы теряете два нейтрона и два протона, но именно протоны превращают этот элемент в другой. Если мы назовем этот элемент 1, что я и собираюсь сделать, то теперь у нас будет новый элемент, элемент 2. Смотрите внимательно. Происходит эмиссия чего-то, что имеет два протона, и два нейтрона. Поэтому его масса будет равна массе двух протонов и двух нейтронов. Что же это? Отделяется что-то, имеющее массу четыре. Что содержит два протона и два нейтрона? Сейчас у меня нет периодической системы элементов. Я забыл ее вырезать и вставить перед съемкой этого видеоролика. Но вы быстро найдете в периодической таблице элемент, имеющий два протона, и этот элемент – гелий. Его атомная масса действительно четыре. Действительно, при альфа-распаде происходит эмиссия именно ядра гелия. Это ядро гелия. Так как это ядро гелия, у него нет электронов, чтобы нейтрализовать заряд протонов, это ион. У него нет электронов. У него только два протона, поэтому он имеет заряд плюс 2. Подпишем заряд. Альфа-частица – это просто ион гелия, ион гелия с зарядом плюс 2, самопроизвольно испускаемый ядром для достижения более устойчивого состояния. Это один вид распада. Теперь другие.. Рисуем еще одно ядро. Нарисую нейтроны. Нарисую протоны. Иногда получается так, что нейтрон чувствует себя неуютно. Он каждый день смотрит на то, что делают протоны, и говорит, знаете, что? Почему-то, когда я прислушиваюсь к себе, я чувствую, что на самом деле должен быть протоном. Если бы я был протоном, все ядро было бы немного устойчивее. И что он делает, чтобы стать протоном? Помните, нейтрон имеет нейтральный заряд? Вот что он делает, он испускает электрон. Это кажется сумасшествием. Электроны в нейтронах и все такое. И я согласен с вами. Это сумасшествие. И однажды мы изучим все, что находится внутри ядра. А пока просто скажем, что нейтрон может испустить электрон. Что он и делает. Итак, вот электрон. Мы принимаем его массу за равную нулю.. На самом деле это не так, но мы говорим сейчас о единицах атомной массы. Если масса протона – один, то масса электрона в 1836 раз меньше. Поэтому мы принимаем его массу за ноль. Хоть это и не так. А его заряд – минус 1. Итак, вернемся к процессу. Нейтрон испускает электрон. Конечно, нейтрон не остается нейтральным, а превращается в протон. Это называется бета-распадом. Запишем этот вид. Бэта-распад. А бета-частица – на самом деле просто испускаемый электрон. Вернемся к нашему элементу. У него есть определенное количество протонов и нейтронов. Вместе они составляют массовое число. Что происходит, когда он подвергается бета-распаду? Изменяется ли количество протонов? Конечно, у нас на один протон больше, чем было, потому что один нейтрон превратился в протон. Количество протонов увеличилось на 1. Изменилось ли массовое число? Посмотрим. Количество нейтронов уменьшилось на один, а количество протонов увеличилось на один. Поэтому массовое число не изменилось. Оно по-прежнему составляет Р плюс N, то есть, масса остается неизменной, в отличие от ситуации с альфа-распадом, но сам элемент изменяется. Количество протонов изменяется. В результате бета-распада мы снова получаем новый элемент. Теперь другая ситуация. Допустим, один из этих протонов смотрит на нейтроны и говорит, знаете, что? Я вижу, как они живут. Мне это очень нравится. Думаю, мне было бы удобнее, а наша группа частиц внутри ядра была бы счастливее, если бы я тоже был нейтроном. Все мы находились бы в более устойчивом состоянии. И что он делает? У этого испытывающего неудобства протона есть возможность испустить позитрон, а не протон. Он испускает позитрон. А что это такое? Это частица, которая имеет точно такую же массу, как и электрон. То есть, его масса в 1836 раз меньше массы протона. Но здесь мы пишем просто ноль, потому что в единицах атомной массы она приближается к нулю. Но позитрон имеет положительный заряд. Немного путает то, что здесь все еще написано е. Когда я вижу е, я думаю, что это электрон. Но нет, эту частицу обозначают буквой е, потому что это частица того же типа, но, вместо отрицательного заряда, она имеет положительный заряд. Это позитрон. Подпишем. Начинает происходить что-то необычное с этими типами частиц и веществом, которые мы рассматриваем. Но это - факт. И если протон испускает эту частицу, то с ней практически уходит его положительный заряд, и этот протон превращается в нейтрон. Это называется эмиссией позитрона. Эмиссию позитрона представить довольно легко, В названии все сказано. Снова элемент Е, с определенным количеством протонов, и нейтронов. Каким должен быть этот новый элемент? Он теряет протон. P минус 1. Он превращается в нейтрон. То есть, количество P уменьшается на один. Количество N увеличивается на один. Поэтому масса целого атома не изменяется. Она составит P плюс N. Но у нас все еще должен получиться другой элемент, правильно? Когда происходит бета-распад, увеличивается количество протонов. Мы переместились вправо в периодической таблице, или увеличили, вы знаете, что я имею в виду. Когда происходит эмиссия позитрона, уменьшается количество протонов. Нужно это записать в обеих этих реакциях. Итак, это эмиссия позитрона, и остается один позитрон. А в нашем бета-распаде остается один электрон. Реакции записаны абсолютно одинаково. Вы знаете, что это электрон, потому что он имеет заряд минус 1. Вы знаете, что это позитрон, потому что он имеет заряд плюс 1. Остается один, последний тип распада, о котором вы должны знать. Но он не изменяет количество протонов или нейтронов в ядре. Он просто высвобождает огромное количество энергии, или, иногда, высокоэнергетический протон. Это явление называется гамма-распадом. Гамма-распад означает, что эти частицы меняют свою конфигурацию. Они немного сближаются. И сближаясь, выделяют энергию в виде электромагнитного излучения с очень маленькой длиной волны. По существу, можно называть это гамма- частицей или гамма-лучом. Это сверхвысокая энергия. Гамма-лучи очень опасны. Они могут вас убить. Все это была теория. Теперь решим пару задач и выясним, с каким типом распада мы имеем дело. Здесь у меня бериллий-7, где семь - это атомная масса. И я превращаю его в литий-7. Итак, что здесь происходит? Масса ядра бериллия остается неизменной, но количество протонов уменьшается с четырех до трех. Уменьшилось количество протонов бериллия. Общая масса не изменилась. Несомненно, это не альфа-распад. Альфа-распад, как вы знаете, это выделение гелия из ядра. Так что же выделяется? Выделяется положительный заряд, или позитрон. Здесь это показано с помощью уравнения. Это позитрон. Поэтому этот тип распада бериллия-7 до лития-7- это эмиссия позитрона. Все ясно. А теперь взглянем на следующий пример. Уран-238, распадающийся до тория-234. И мы видим, что атомная масса уменьшается на 4, и видим, что атомное число уменьшается, количество протонов уменьшается на 2. Вероятно, выделилось что-то, что имеет атомную массу четыре, и атомное число два, то есть, гелий. Значит это альфа-распад. Вот здесь – это альфа-частица. Это пример альфа-распада. Но тут не все так просто. Потому что, если из 92 протонов осталось 90 протонов, здесь осталось еще 92 электрона. Будет ли теперь заряд минус 2? И более того, гелий, который высвобождается, он же не имеет электронов. Это просто ядро гелия. Так будет ли заряд плюс 2? Задавая такой вопрос, вы будете абсолютно правы. Но на самом деле именно в момент распада у тория больше нет причин удерживать эти два электрона, поэтому эти два электрона исчезают, и торий опять становится нейтральным. А гелий очень быстро реагирует таким же образом. Ему очень нужны два электрона для устойчивости, поэтому он очень быстро захватывает два электрона и становится стабильным. Можно записать это любым способом. Рассмотрим еще один пример. Здесь у меня йод. Хорошо. Посмотрим, что происходит. Масса не изменяется. Протоны должны превратиться в нейтроны или нейтроны – превратиться в протоны. Мы видим, тут у меня 53 протона, а здесь - 54. Видимо, один нейтрон превратился в протон. Нейтрон, видимо, превратился в протон. А нейтрон превращается в протон, испуская электрон. И мы наблюдаем это во время этой реакции. Электрон высвободился. Значит, это бета-распад. Это бета-частица. Подписали. Действует та же логика. Подождите, вместо 53 стало 54 протона. Теперь, когда прибавился еще один протон, будет ли у меня положительный заряд? Да, будет. Но очень скоро – возможно, не именно эти электроны, вокруг вращается так много электронов – я захвачу электроны из какого-нибудь места, чтобы стать устойчивым, и снова обрету устойчивость. Но вы будете абсолютно правы, если зададите вопрос, не станет ли частица ионом на малую долю времени? Рассмотрим еще один пример. Радон-222 с атомным числом 86, который превращается в полоний -218, с атомным числом 84. Небольшое интересное отступление. Полоний назван так в честь Польши, потому что Мария Кюри, открывшая его, оттуда, в то время, примерно в конце 1800-х годов – Польша еще не существовала как отдельная страна. Ее территория была разделена между Пруссией, Россией и Австрией. И поляки очень хотели, чтобы люди знали – они – единый народ. Они сделали открытие, что, когда радон подвергается распаду, образуется этот элемент. И назвали его в честь своей родины, Польши. Это привилегия открытия новых элементов. Но вернемся к задаче. Итак, что произошло? Атомная масса уменьшилась на четыре. Атомное число уменьшилось на два. Еще раз повторю, видимо, высвободилась частица гелия. Ядро гелия имеет атомную массу четыре и атомное число два. Все ясно. Значит, это альфа-распад. Можно написать, что это ядро гелия. Оно не имеет электронов. Мы можем даже сразу сказать, что оно будет иметь отрицательный заряд, но затем оно его теряет. Subtitles by the Amara.org community

Теория

Альфа-распад из основного состояния наблюдается только у достаточно тяжёлых ядер, например, у радия-226 или урана-238 . Альфа-радиоактивные ядра в таблице нуклидов появляются начиная с атомного номера 52 (теллур) и массового числа около 106-110, а при атомном номере больше 82 и массовом числе больше 200 практически все нуклиды альфа-радиоактивны, хотя альфа-распад у них может быть и не доминирующей модой распада. Среди природных изотопов альфа-радиоактивность наблюдается у нескольких нуклидов редкоземельных элементов (неодим-144, самарий-147, самарий-148, европий-151, гадолиний-152), а также у нескольких нуклидов тяжёлых металлов (гафний-174, вольфрам-180, осмий-186, платина-190, висмут-209, торий-232, уран-235, уран-238) и у короткоживущих продуктов распада урана и тория.

Альфа-распад из высоковозбуждённых состояний ядра наблюдается и у ряда лёгких нуклидов, например у лития-7.

Альфа-частица испытывает туннельный переход через потенциальный барьер , обусловлен ядерными силами , поэтому альфа-распад является существенно квантовым процессом. Поскольку вероятность туннельного эффекта зависит от высоты барьера экспоненциально , период полураспада альфа-активных ядер экспоненциально растёт с уменьшением энергии альфа-частицы (этот факт составляет содержание закона Гейгера-Нэттола). При энергии альфа-частицы меньше 2 МэВ время жизни альфа-активных ядер существенно превышает время существования Вселенной . Поэтому, хотя большинство природных изотопов тяжелее церия в принципе способны распадаться по этому каналу, лишь для немногих из них такой распад действительно зафиксирован.Опасность для живых организмов

Будучи довольно тяжелыми и положительно заряженными, альфа-частицы от радиоактивного распада имеют очень короткий пробег в веществе и при движении в среде быстро теряют энергию на небольшом расстоянии от источника. Это приводит к тому, что вся энергия излучения высвобождается в малом объеме вещества, что увеличивает шансы повреждения клеток при попадании источника излучения внутрь организма. Однако внешнее излучение от радиоактивных источников безвредно, поскольку альфа-частицы могут эффективно задерживаться несколькими сантиметрами воздуха или десятками микрометров плотного вещества - например, листом бумаги и даже роговым омертвевшим слоем эпидермиса , не достигая живых клеток. Даже прикосновение к источнику чистого альфа-излучения не опасно, хотя следует помнить, что многие источники альфа-излучения излучают также гораздо более проникающие типы излучения (бета-частицы , гамма-кванты , иногда нейтроны). Однако попадание альфа-источника внутрь организма приводит к значительному облучению. Коэффициент качества альфа-излучения равен 20 (больше всех остальных типов ионизирующего излучения, за исключением тяжёлых ядер и осколков деления). Это означает, что в живой ткани альфа-частица создаёт оценочно в 20 раз большие повреждения, чем гамма-квант или бета-частица равной энергии.

Всё вышеизложенное относится к радиоактивным источникам альфа-частиц, энергии которых не превосходят 15 МэВ. Альфа-частицы, полученные на ускорителе, могут иметь значительно более высокие энергии и создавать значимую дозу даже при внешнем облучении организма.

Ядра большинства атомов - это довольно устойчивые образования. Однако ядра атомов радиоактивных веществ в процессе радиоактивного распада самопроизвольно превращаются в ядра атомов других веществ. Так в 1903 году Резерфорд обнаружил, что помещенный в сосуд радий через некоторое время превратился в радон. А в сосуде дополнительно появился гелий: (88^226)Ra→(86^222)Rn+(2^4)He. Чтобы понимать смысл написанного выражения, изучите тему о массовом и зарядовом числе ядра атома .

Удалось установить, что основные виды радиоактивного распада: альфа и бета-распад происходят согласно следующему правилу смещения:

Альфа-распад

При альфа-распаде излучается α-частица (ядро атома гелия). Из вещества с количеством протонов Z и нейтронов N в атомном ядре оно превращается в вещество с количеством протонов Z-2 и количеством нейтронов N-2 и, соответственно, атомной массой А-4: (Z^A)X→(Z-2^(A-4))Y +(2^4)He. То есть происходит смещение образовавшегося элемента на две клетки назад в периодической системе.

Пример α-распада: (92^238)U→(90^234)Th+(2^4)He.

Альфа-распад - это внутриядерный процесс . В составе тяжелого ядра за счет сложной картины сочетания ядерных и электростатических сил образуется самостоятельная α-частица, которая выталкивается кулоновскими силами гораздо активнее остальных нуклонов. При определенных условиях она может преодолеть силы ядерного взаимодействия и вылететь из ядра.

Бета-распад

При бета-распаде излучается электрон (β-частица). В результате распада одного нейтрона на протон, электрон и антинейтрино, состав ядра увеличивается на один протон, а электрон и антинейтрино излучаются вовне: (Z^A)X→(Z+1^A)Y+(-1^0)e+(0^0)v. Соответственно, образовавшийся элемент смещается в периодической системе на одну клетку вперед.

Пример β-распада: (19^40)K→(20^40)Ca+(-1^0)e+(0^0)v.

Бета-распад - это внутринуклонный процесс . Превращение претерпевает нейтрон. Существует также бета-плюс-распад или позитронный бета-распад. При позитронном распаде ядро испускает позитрон и нейтрино, а элемент смещается при этом на одну клетку назад по периодической таблице. Позитронный бета-распад обычно сопровождается электронным захватом.

Гамма-распад

Кроме альфа и бета-распада существует также гамма-распад. Гамма-распад - это излучение гамма-квантов ядрами в возбужденном состоянии, при котором они обладают большой по сравнению с невозбужденным состоянием энергией. В возбужденное состояние ядра могут приходить при ядерных реакциях либо при радиоактивных распадах других ядер. Большинство возбужденных состояний ядер имеют очень непродолжительное время жизни - менее наносекунды.

Также существуют распады с эмиссией нейтрона, протона, кластерная радиоактивность и некоторые другие, очень редкие виды распадов. Но превалирующие

Лекция: Радиоактивность. Альфа-распад. Бета-распад. Электронный β-распад. Позитронный β-распад. Гамма-излучение


Радиоактивность


Радиоактивность была обнаружена совершенно случайно в результате экспериментов, проведенных А. Беккерелем в 1896 году. Недавно открытые рентгеновские лучи привели к тому, что ученый захотел выяснить, не появляются ли они в результате освещение солнечным светом некоторых элементов. Для своего эксперимента Беккерель выбрал соль урана.


Соль была положена на фотопластину и завернута в черную бумагу, для обеспечения качественного эксперимента. В результате того, что соль пролежала несколько часов под прямыми солнечными лучами, на проявленной фотопластине оказался снимок, полностью соответствующий очертаниям кристаллов соли. Данный опыт позволил Беккерелю выступить на конференции, где говорил о новых проявлениях рентгеновских лучей. Через несколько недель он должен был заявить о новых результатах при аналогичных исследованиях.


Однако, ученому помешала погода. Поскольку все время было облачно, соль пролежала завернутой вместе с фотопластиной в черную бумагу, находясь в ящике стола. В отчаянии ученый проявил фотопластину, в результате чего заметил, что соль оставила свой след даже без солнечных лучей.


Оказалось, что уран испускает какие-то лучи, которые так же способны пронизывать бумагу и оставлять след на пластине.

Данное явление получило название радиоактивности.


В последствии оказалось, что не только уран является радиоактивным. Семья Кюри обнаружила аналогичные свойства у тория, полония, а также радия.


Виды радиоактивного излучения


В ходе многочисленных экспериментов, при которых уран помещался в магнитное поле, было выяснено, что любой радиоактивный элемент имеет три основных вида излучения - альфа, бета и гамма.


В результате помещения радиоактивного элемента в свинцовую пластину, на которую действует магнитное поле, на экране наблюдалось три пятна, находящиеся на некотором расстоянии друг от друга.

1. Альфа-лучи (альфа-частицы) - это положительная частица, которая имеет 4 нуклона и два положительных заряда. данное излучение является наиболее слабым. Изменить направление движения альфа-частицы можно даже листком бумаги.

Уравнение и примеры такого распада:

2 . Бетта-излучение или бетта-частица . Данное излучение протекает в результате выбивания одного отрицательного или положительного электрона (позитрона).

3. Гамма-излучение - это излучение, при котором выделяется электромагнитная волна, подобная рентгеновскому излучению.

При данном виде распада ядро с атомным номером Z и массовым числом А распадается путем испускания альфа-частицы, что приводит к образованию ядра с атомным номером Z-2 и массовым числом А-4:

В настоящее время известно более 200 альфа-излучающих нуклидов, среди которых почти не встречаются легкие и средние ядра. Из легких ядер исключение составляет 8 Be, кроме того, известно около 20 альфа-излучающих нуклидов редкоземельных элементов. Подавляющее же большинство a-излучающих изотопов относится к радиоактивным элементам, т.е. к элементам с Z> 83, среди которых значительную часть составляют искусственные нуклиды. Среди естественных нуклидов существует порядка 30 альфа-активных ядер, относящихся к трем радиоактивным семействам (урановый, актиниевый, и ториевый ряды), которые рассмотрены выше. Периоды полураспада известных альфа-радиоактивных нуклидов варьируются от 0,298 мкс для 212 Po до >10 15 лет для 144 Nd, 174 Hf. Энергия альфа-частиц, испускаемых тяжелыми ядрами из основных состояний, составляет 4-9 МэВ, а ядрами редкоземельных элементов 2-4,5 МэВ.

То, что вероятность альфа-распада возрастает с ростом Z, обусловлено тем, что этот вид превращения ядер связан с кулоновским отталкиванием, которое по мере увеличения размеров ядер возрастает пропорционально Z 2 , тогда как ядерные силы притяжения растут линейно с ростом массового числа A .

Как было показано ранее, ядро будет неустойчиво по отношению к a- распаду, если выполняется неравенство:

где и – массы покоя исходного и конечного ядер соответственно;

– масса a-частицы.

Энергия α-распада ядер (Е α) складывается из кинетической энергии альфа-частицы, испущенной материнским ядром Т α , и кинетической энергии, которую приобретает дочернее ядро в результате испускания альфа-частицы (энергия отдачи) Т отд :

Используя законы сохранения энергии и импульса, можно получить соотношение:

где М отд = – масса ядра отдачи;

М α – масса альфа-частицы.

Совместно решая уравнения (4.3) и (4.4), получим:

. (4.5)

И, соответственно,

. (4.6)

Из уравнений (4.5 и 4.6) видно, что основную часть энергии альфа-распада (около 98 %) уносят альфа-частицы. Кинетическая энергия ядра отдачи составляет величину ≈100 кэВ (при энергии альфа- распада ≈5 МэВ). Следует отметить, что даже такие, казалось бы, небольшие значения кинетической энергии атомов отдачи являются весьма значительными и приводят к высокой реакционной способности атомов, имеющих подобные ядра. Для сравнения отметим, что энергия теплового движения молекул при комнатной температуре составляет примерно 0,04 эВ, а энергия химической связи обычно меньше 2 эВ. Поэтому ядро отдачи не только рвет химическую связь в молекуле, но и частично теряет электронную оболочку (электроны просто не успевают за ядром отдачи) с образованием ионов.

При рассмотрении различных видов радиоактивного распада, в том числе и альфа-распада, используют энергетические диаграммы. Простейшая энергетическая диаграмма представлена на рис. 4.1.

Рис. 4.1. Простейшая схема альфа-распада.

Энергетическое состояние системы до и после распада изображается горизонтальными линиями. Альфа-частица изображается стрелкой (жирной или двойной) идущей справа налево вниз. На стрелке указывается энергия испускаемых альфа-частиц.

Следует иметь в виду, что представленная на рис. 4.1 схема является простейшим случаем, когда испускаемые ядром альфа-частицы имеют одну определенную энергию. Обычно альфа- спектр имеет тонкую структуру, т.е. ядрами одного и того же нуклида испускаются альфа-частицы с достаточно близкими, но все же отличающимися по величине энергиями. Было установлено, что если альфа-переход осуществляется в возбужденное состояние дочернего ядра, то энергия альфа-частиц будет, соответственно, меньше энергии присущей переходу между основными состояниями исходного и дочернего ядер радионуклидов. И если таких возбужденных состояний несколько, то и возможных альфа-переходов будет несколько. При этом образуются дочерние ядра с различной энергией, которые при переходе в основное или более устойчивое состояние испускают гамма-кванты.

Зная энергию всех альфа-частиц и гамма-квантов, можно построить энергетическую диаграмму распада.

Пример. Построить схему распада по следующим данным:

· энергия α-частиц составляет: 4,46; 4,48; 4,61; и 4,68 МэВ,

· энергия γ-квантов – 0,07; 0,13; 0,20; и 0,22 МэВ.

Полная энергия распада 4,68 МэВ.

Решение . От энергетического уровня исходного ядра проводим четыре стрелки, каждая из которых обозначает испускание α-частиц определенной энергии. Вычисляя разности между значениями энергий отдельных групп α-частиц и сравнивания эти разности с энергиями γ-квантов, находим, каким переходам соответствует испускание γ-квантов каждой энергии

4,48 – 4,46 = 0,02 МэВ соответствующих γ-квантов нет

4,61 – 4,46 = 0,15 МэВ


4,61 – 4,48 = 0,13 МэВ энергии соответствуют энергиям

4,68 – 4,46 = 0,22 МэВ γ-квантов, испускаемых при распаде

4,68 – 4,48 = 0,20 МэВ 230 Th

4,68 – 4,61 = 0,07 МэВ

Рис. 4.2 – Схема распада 230 Th.

Вместе с тем, возможен и второй случай, когда альфа-переход осуществляется из возбужденного состояния родительского ядра в основное состояние дочернего. Эти случаи принято квалифицировать как появление длиннопробежных альфа-частиц, возможности для испускания которых возникают у возбужденных ядер, образующихся в результате сложного β-распада. Так, в качестве примера, на рисунке 4.3 представлена схема испускания длиннопробежных α-частиц ядром полония-212, образующегося в результате β-распада ядра висмута-212. Видно, что в зависимости от характера β-перехода ядро полония-212 может образоваться в основном и возбужденном состояниях. Альфа-частицы, испускаемые с возбужденных состояний ядра полония-212, и являются длиннопробежными. Однако, следует иметь в виду, что для возникших таким способом альфа-активных ядер более вероятен переход из возбужденного состояния путем испускания γ‑кванта, а не длиннопробежной альфа-частицы. Поэтому длиннопробежные альфа-частицы встречаются весьма редко.

Далее, учеными была установлена весьма важная закономерность: при небольшом увеличении энергии a-частиц периоды полураспада изменяются на несколько порядков . Так у 232 Th Т a = 4,08 МэВ, T 1/2 = 1,41×10 10 лет, а у 230 Th – Т a = 4,76 МэВ, T 1/2 = 1,7∙10 4 лет.

Рис. 4.3. Схема последовательного распада: 212 Bi – 212 Po – 208 Pb

Видно, что уменьшение энергии альфа-частиц примерно на 0,7 МэВ сопровождается увеличением периода полураспада на 6 порядков. При Т α < 2 МэВ период полураспада становится настолько большим, что экспериментально обнаружить альфа-активность практически невозможно. Разброс в значениях периодов полураспада, характерных для альфа-распада, весьма велик:

10 16 лет ≥ Т 1/2 ≥ 10 –7 сек,

и в то же время имеет место весьма узкий интервал значений энергий альфа-частиц, испускаемых радиоактивными ядрами:

2 МэВ ≤ Т α ≤ 9 МэВ.

Зависимость между периодом полураспада и энергией альфа-частицы была экспериментально установлена Гейгером и Нэттолом в 1911-1912 годах. Ими было показано, что зависимость lgT 1/2 от lgТ α хорошо аппроксимируется прямой линией:

. (4.7)

Данный закон хорошо выполняется для четно-четных ядер. Тогда как для нечетно-нечетных ядер наблюдается весьма значительное отклонение от закона.

Сильная зависимость вероятности альфа-распада, а следовательно и периода полураспада, от энергии была объяснена Г. Гамовым и Э. Кондоном в 1928 году с помощью теории одночастичной модели ядра. В этой модели предполагается, что альфа-частица постоянно существует в ядре, т.е. материнское ядро состоит из дочернего ядра и альфа-частицы. Предполагается, что альфа-частица движется в сферической области радиуса R (R – радиус ядра) и удерживается в ядре короткодействующими кулоновскими ядерными силами. На расстояниях r, больших радиуса дочернего ядра R , действуют силы кулоновского отталкивания.

Hа рис. 4.4 показана зависимость потенциальной энергии между альфа-частицей и ядром отдачи от расстояния между их центрами.

По оси абсцисс отложено расстояние между дочерним ядром и альфа-частицей, по оси ординат – энергия системы. Кулоновский потенциал обрезается на расстоянии R , которое приблизительно равно радиусу дочернего ядра. Высота кулоновского барьера B, который должна преодолеть альфа-частица, чтобы покинуть ядро, определяется соотношением:

где Z и z – заряды дочернего ядра и альфа-частицы соответственно.

Рис. 4.4. Изменение потенциальной энергии системы с расстоянием между дочерним ядром и альфа-частицей.

Величина потенциального барьера значительно превышает энергию альфа-частиц, испускаемых радиоактивными ядрами, и согласно законам классической механики альфа-частица не может покинуть ядро. Но для элементарных частиц, поведение которых описывается законами квантовой механики, возможно прохождение этих частиц через потенциальный барьер, которое получило название туннельного перехода.

В соответствии с теорией альфа-распада, начала которой заложены Г. Гамовым и Э. Кондоном, состояние частицы описывается волновой функцией ψ, которая согласно условиям нормировки в любой точке пространства отлична от нуля, и, таким образом, существует конечная вероятность обнаружить альфа-частицу как внутри барьера, так и за его пределами. То есть, возможен процесс так называемого туннельного перехода альфа-частицы через потенциальный барьер.

Было показано, что проницаемость барьера является функцией атомного номера, атомной массы, радиуса ядра и характеристики потенциального барьера.

Установлено, что альфа-переходы четно-четных ядер из основного уровня материнских нуклидов на основной уровень дочерних характеризуются наименьшими значениями периодов полураспада. Для нечетно-четных, четно-нечетных и нечетно-нечетных ядер общая тенденция сохраняется, но их периоды полураспада в 2-1000 раз больше, чем для четно-четных ядер с данными Z и Т α .Полезно запомнить: энергия альфа-частиц, испускаемых радионуклидами, с одинаковым массовым числом, растет с ростом заряда ядра.

2.3 Закономерности α - и β -распада

Активностью A нуклида в радиоактивном источнике называется число распадов, происходящих с ядрами образца в 1 с:

Единица активности беккерель (Бк) : 1Бк — активность нуклида, при которой за 1с происходит один акт распада. Внесистемная единица активности нуклида в радиоактивном источнике — кюри (Кu) : 1 Кu=3,7·10 10 Бк.

Альфа-распад . Альфа-распадом называется самопроизвольное превращение атомного ядра с числом протонов Z и нейтронов N в другое (дочернее) ядро, содержащее число протонов Z – 2 и нейтронов N – 2. При этом испускается α-частица – ядро атома гелия . Примером такого процесса может служить α-распад радия:

Альфа-частицы, испускаемые ядрами атомов радия, использовались Резерфордом в опытах по рассеянию на ядрах тяжелых элементов. Скорость α-частиц, испускаемых при α-распаде ядер радия, измеренная по кривизне траектории в магнитном поле, приблизительно равна 1,5·10 7 м/с, а соответствующая кинетическая энергия около 7,5·10 –13 Дж (приблизительно 4,8 МэВ). Эта величина легко может быть определена по известным значениям масс материнского и дочернего ядер и ядра гелия. Хотя скорость вылетающей α-частицы огромна, но она все же составляет только 5 % от скорости света, поэтому при расчете можно пользоваться нерелятивистским выражением для кинетической энергии.

Исследования показали, что радиоактивное вещество может испускать α-частицы с несколькими дискретными значениями энергий. Это объясняется тем, что ядра могут находиться, подобно атомам, в разных возбужденных состояниях. В одном из таких возбужденных состояний может оказаться дочернее ядро при α-распаде. При последующем переходе этого ядра в основное состояние испускается γ-квант. Схема α-распада радия с испусканием α-частиц с двумя значениями кинетических энергий приведена на рисунке 2.4.

Рисунок 2.4 - Энергетическая диаграмма α-распада ядер радия. Указано возбужденное состояние ядра радона Переход из возбужденного состояния ядра радона в основное сопровождается излучением γ-кванта с энергией 0,186 МэВ

Таким образом, α-распад ядер во многих случаях сопровождается γ-излучением.

В теории α-распада предполагается, что внутри ядер могут образовываться группы, состоящие из двух протонов и двух нейтронов, т. е. α-частица. Материнское ядро является для α-частиц потенциальной ямой, которая ограничена потенциальным барьером. Энергия α-частицы в ядре недостаточна для преодоления этого барьера (рисунок 2.5). Вылет α-частицы из ядра оказывается возможным только благодаря квантово-механическому явлению, которое называется туннельным эффектом. Согласно квантовой механике, существуют отличная от нуля вероятность прохождения частицы под потенциальным барьером. Явление туннелирования имеет вероятностный характер.

Бета-распад . При бета-распаде из ядра вылетает электрон. Внутри ядер электроны существовать не могут (см. § 1.2), они возникают при β-распаде в результате превращения нейтрона в протон. Этот процесс может происходить не только внутри ядра, но и со свободными нейтронами. Среднее время жизни свободного нейтрона составляет около 15 минут. При распаде нейтрон превращается в протон и электрон

Измерения показали, что в этом процессе наблюдается кажущееся нарушение закона сохранения энергии, так как суммарная энергия протона и электрона, возникающих при распаде нейтрона, меньше энергии нейтрона. В 1931 году В. Паули высказал предположение, что при распаде нейтрона выделяется еще одна частица с нулевыми значениями массы и заряда, которая уносит с собой часть энергии. Новая частица получила название нейтрино (маленький нейтрон). Из-за отсутствия у нейтрино заряда и массы эта частица очень слабо взаимодействует с атомами вещества, поэтому ее чрезвычайно трудно обнаружить в эксперименте. Ионизирующая способность нейтрино столь мала, что один акт ионизации в воздухе приходится приблизительно на 500 км пути. Эта частица была обнаружена лишь в 1953 г. В настоящее время известно, что существует несколько разновидностей нейтрино. В процессе распада нейтрона возникает частица, которая называется электронным антинейтрино . Она обозначается символом Поэтому реакция распада нейтрона записывается в виде

Аналогичный процесс происходит и внутри ядер при β-распаде. Электрон, образующийся в результате распада одного из ядерных нейтронов, немедленно выбрасывается из «родительского дома» (ядра) с огромной скоростью, которая может отличаться от скорости света лишь на доли процента. Так как распределение энергии, выделяющейся при β-распаде, между электроном, нейтрино и дочерним ядром носит случайный характер, β-электроны могут иметь различные скорости в широком интервале значений.

При β-распаде зарядовое число Z увеличивается на единицу, а массовое число A остается неизменным. Дочернее ядро оказывается ядром одного из изотопов элемента, порядковый номер которого в таблице Менделеева на единицу превышает порядковый номер исходного ядра. Типичным примером β-распада может служить превращение изотона тория возникающего при α-распаде урана в палладий

Наряду с электронным β-распадом обнаружен так называемый позитронный β + -распад, при котором из ядра вылетают позитрон и нейтрино . Позитрон – это частица-двойник электрона, отличающаяся от него только знаком заряда. Существование позитрона было предсказано выдающимся физиком П. Дираком в 1928 г. Через несколько лет позитрон был обнаружен в составе космических лучей. Позитроны возникают в результате реакции превращения протона в нейтрон по следующей схеме:

Гамма-распад . В отличие от α- и β-радиоактивности, γ-радиоактивность ядер не связана с изменением внутренней структуры ядра и не сопровождается изменением зарядового или массового чисел. Как при α-, так и при β-распаде дочернее ядро может оказаться в некотором возбужденном состоянии и иметь избыток энергии. Переход ядра из возбужденного состояния в основное сопровождается испусканием одного или нескольких γ-квантов, энергия которых может достигать нескольких МэВ.

Похожие публикации