Экспертное сообщество по ремонту ванных комнат

Стабилизатор с малым падением напряжения (Low-Drop). Стабилизатор напряжения на полевом транзисторе — схемотехника Стабилизатор с низким падением напряжения

Одним из важнейших свойств стабилизаторов питания является наименьшее допускаемое напряжение между выходом и входом стабилизатора при наибольшем нагрузочном токе. Он выдает информацию, при какой наименьшей разности напряжений параметры прибора находятся в нормальном состоянии.

Одним способом повышения КПД линейной настройки является снижение до наименьшего значения падения напряжения регулировочного элемента. Это особенно важно для миниатюрных регуляторов, на которых каждые вспомогательные 50 милливольт падения преобразуются в несколько сотен милливатт теплоты со сложным рассеиванием в небольшом корпусе устройства.

Поэтому для подключения подобных схем многие фирмы предлагают проектировщикам микросхемы с малым падением до 100 милливольт. Хорошие параметры имеет микросхема ST 1L 08 при токовой нагрузке до 0,8 А наименьшее падение на транзисторе имеется около 70 милливольт.

Из заводских стабилизаторов можно отметить те, у которых при снижении нагрузочного тока до наименьшего значения падение снижается до 0,4 милливольта. Для уменьшения шума такие микросхемы снабжены вспомогательным буферным усилителем с клеммой для подключения наружного фильтра емкостью до 0,01 мкФ. К такому фильтру предъявляются наименьшие требования: величина емкости должна быть от 2,2 до 22 мкФ.

Особое внимание необходимо обратить на микросхему LD CL 015. При хороших свойствах и низком падении напряжения это один из стабилизаторов, работающих без конденсаторного фильтра. Это достигается схемой операционного усилителя с запасом по фазе. Однако для улучшения параметров и уменьшения шума на выходе целесообразно установить на выходе и входе прибора емкости около 0,1 мкФ.

Прибор с падением до 0,05 вольт

При подключении разной аппаратуры от аккумуляторов, чаще всего есть необходимость выравнивать напряжение и расходуемый ток. Например, для образования лазера видеопроигрывателя или фонарика на светодиодах. Для решения такой задачи на производстве уже спроектировано несколько микросхем в виде драйверов. Они представляют собой низковольтный преобразователь напряжения с внутренним стабилизатором. Новой разработкой является микросхема LТ 130 8А.

Не снижая преимущества таких драйверов, нужно заметить, что в большом областном городе нет таких микросхем. Можно заказать по высокой стоимости, около 10 евро. Поэтому есть дешевая простая и эффективная схема прибора из одного радио журнала.

Коэффициент стабилизации такого устройства равен 10000. Напряжение на выходе настраиваем сопротивлением 2,4 килома от 2 до 8 вольт. При величине питания на входе ниже выхода, настроечный транзистор открыт, и снижение питания равно нескольким мВ. Если входное напряжение выше выходного, то на стабилитроне оно равно 0,05 вольт. Это становится возможным для от пальчиковых батареек. Даже, меняя нагрузочный ток в интервале от 0 до 0,5 ампера, выходное напряжение изменится только на 1 мВ.

Для такого простого стабилизатора плату не обязательно травить, а можно вырезать специальным ножом. Оно изготавливается из сломанных полотен по железу, затачивается на шлифовальном круге. Затем ручку обматывают для удобства пользования.

Таким резаком можно процарапать дорожки на медной плате.

Плату чистим шлифшкуркой, лудим, припаиваем детали и все готово.

На фотографиях видно, что нет необходимости в травлении платы и ее сверлении.

Такой способ всегда применяется для производства маленьких простых схем. Нет необходимости оснащать радиатором охлаждения мощный транзистор. Он из-за небольшого падения напряжения не нагревается. При настройке обязательно необходимо подключить слабую нагрузку на выход.

Устройство выравнивания питания с малым падением

Наиболее важным свойством обладает стабилизатор с малым падением питания, так же как и на микросхемах, наименее допустимая разность потенциалов выхода и входа при наибольшей токовой нагрузке. Он определяет, при какой наименьшей разности напряжений между выходом и входом все свойства прибора находятся в норме.

  • У наиболее распространенных стабилизаторов, выполненных на микросхемах серии М78 наименьшее допускаемое напряжение равно 2 вольта при силе тока 1 ампер.
  • Прибор на микросхеме с минимальным напряжением на входе должен выдавать напряжение 7 вольт на выходе. При амплитуде импульсов на выходе прибора доходит до 1 вольта, то величина входного наименьшего напряжения увеличивается до 8 вольт.
  • С учетом нестабильности напряжения сети в интервале 10% увеличивается до 8,8 вольт.

В итоге КПД прибора не превзойдет 57%, при значительном токе на выходе микросхема сильно нагреется.

Применение микросхем с низким падением

Хорошим выходом из ситуации является использование таких сборок, как КР 1158 ЕН, или LМ 10 84.

Работа прибора на микросхеме заключается в следующем:

  • Малых значений напряжения можно достичь, применяя для регулировки мощный полевик.
  • Транзистор работает в положительной линии.
  • Использование стабилизатора с n-каналом предполагается по испытаниям: такие полупроводники не склонны к самовозбуждению.
  • Сопротивление открытой цепи ниже, по сравнению с p-канальным.
  • Транзистором управляет параллельный стабилизатор.
  • Для открытия полевого транзистора, напряжение на затворе доводят на 2,5 вольта выше истока.

Такой вспомогательный источник необходим, если у него напряжение на выходе выше напряжения стока полевого транзистора на это значение.

С ПАДЕНИЕМ НАПРЯЖЕНИЯ 0.05 В

При питании различной аппаратуры от батареек, часто возникает необходимость стабилизировать напряжение и потребляемый ток. Например при создании DVD лазера (смотрите статью на сайте) или светодиодного фонарика. Для этих целей, промышленность уже разработала несколько так называемых микросхем - драйверов, представляющих собой преобразователь низковольтного напряжения со встроенным стабилизатором. Последняя разработка - микросхема LT1308A.

Нисколько не уменьшая достоинства этих драйверов, хочу заметить, что даже в нашем крупном областном центре, такие микросхемы не достанешь. Только под заказ и по цене от 10 уе. Поэтому предлагаю простую, дешёвую но эффективную схему стабилизатора, из радиоаматора 4 2007.

Коэффициент стабилизации около 10000, выходное напряжение выставляем резистором 2.4 к* в пределах 2 - 8 В. При напряжении на входе меньше чем на выходе, регулирующий транзистор полностью открыт, и падение напряжения составляет несколько милливольт. Когда напряжение входа превышает выходное - падение на стабилизаторе составляет всего 0.05 В! Это делает возможным питание свето- и лазерных диодов от двух - трёх пальчиковых батареек. Тем более, что меняя ток нагрузки в пределах 0 - 0.5 А, Uвых меняется лишь на 1 милливольт. Плату для такого простого девайса можно не травить, а вырезать резаком. Для тех, кто не знает, объясню: берём сломанное полотно от ножовки по металлу и затачиваем на наждаке. Далее для удобства держания в руке, обматываем толстым проводом.


Теперь этим инструментом просто процарапываем с усилием медь, как дорожки.

Зачищаем наждачкой, залуживаем, паяем детали, и готово.


Имеется большая потребность в 5-вольтовых стабилизаторах с выходными токами несколько ампер и с как можно меньшим падением напряжения. Падение напряжения является просто разностью между входным постоян­ным напряжением и выходным с условием, что поддерживается стабилиза­ция. Необходимость в стабилизаторах с такими параметрами можно видеть на практическом примере, в котором напряжение никель-кадмиевого ак­кумулятора, равное примерно 8,2 В, стабилизируется на уровне 5 В. Если падение напряжения составляет обычные 2 или 3 В, то ясно, что длитель­но пользоваться таким аккумулятором невозможно. Увеличение напряже­ния аккумулятора является не лучшим решением, поскольку в этом слу­чае в проходном транзисторе будет бессмысленно рассеиваться мощность. Если бы можно было поддерживать стабилизацию при падении напряжения, например, вдвое меньшем, общая ситуация была бы намного лучше.

Известно, что непросто сделать в интегральных схемах стабилизаторов проходной транзистор с низким напряжением насыщения. Хотя желатель­но управлять проходным транзистором с помощью ИС, сам транзистор дол­жен быть отдельным устройством. Это естественно предполагает примене­ние гибридных устройств, а не полностью интехральных схем. Фактически это скрытое благословение, поскольку позволяет легко оптимизировать на­пряжение насыщения и бета транзистора для достижения намеченной цели. Кроме того, можно даже экспериментировать с германиевыми транзистора­ми, которые по своей природе имеют низкие напряжения насыщения. Дру­гой фактор, который следует учесть, состоит в том, что /7л/7-транзисторы имеют более низкие напряжения насыщения, чем их прп аналоги.

Использование этих фактов естественно приводит к схеме стабили­затора с низким падением напряжения, показанной на рис. 20.2. Паде­ние напряжение на этом стабилизаторе составляет 50 мВ при токе на­грузки 1 А и всего лишь 450 мВ при токе 5 А. Необходимость создания проходного транзистора по существу была стимулирована выпуском ли­нейного интегрального стабилизатора?71123. Кремниевый /?л/7-транзис-тор MJE1123 был специально разработан для этой схемы, но имеется не­сколько аналогичных транзисторов. Низкое напряжение насыщения является важным параметром при выборе транзистора, но важен также высокий коэффициент усиления по постоянному току (бета) для надеж­ного ограничения тока короткого замыкания. Оказалось, что германие­вый транзистор 2iV4276 позволяет получить даже более низкие падения напряжения, но, вероятно, за счет ухудшения характеристики ограниче­ния тока при коротком замыкании. Сопротивление резистора в цепи базы проходного транзистора (на схеме 20 Ом) подбирается опытным путем. Идея состоит в том, чтобы делать его как можно выше при при­емлемом падении напряжения. Его величина будет зависеть от предпо­лагаемого максимального входного напряжения. Другой особенностью

этого стабилизатора является низкая величина тока холостого хода, око­ло 600 мкА, что способствует долгому сроку службы аккумулятора.

Рис. 20.2. Пример линейного стабилизатора, имеющего низкое паде­ние напряжения. Здесь используется гибридная схема, потому что трудно получить низкое падение напряжения, применяя только ИС. Linear Technology Софога!1оп.

Аналогичный линейный стабилизатор с низким падением напряжения другой полупроводниковой фирмы показан на рис. 20.3. Основные характе­ристики остаются теми же самыми - падение напряжения 350 мВ при токе нафузки 3 А. И снова, применение гибридной схемы дает дополнительную гибкость при проектировании. Главное, чем отличаются различные ИС для управления такими стабилизаторами, состоит в наличии вспомогательных функций. Необходимость в них можно заранее оценить применительно к конкретному приложению и сделать соответствующий выбор. Большинство этих специализированных ИС имеют, по крайней мере, защиту от короткого замыкания и перегрева. Поскольку проходной рпр-тршшстор является вне­шним по отношению к ИС, важен хороший теплоотвод. Часто для обеспе­чения дополнительной стабилизации линейный стабилизатор с низким па­дением напряжения добавляют к уже созданному ИИП. Причем, к.п.д. системы в целом при этом практически не изменится. Этого нельзя сказать, когда для дополнительной стабилизации используется обычный интефаль-ный стабилизатор напряжения с 3-мя выводами.

Первым желанием может быть повторение только что описанных двух схем с низким падением напряжения, применяя обычный интег­ральный стабилизатор напряжения с 3-мя выводами и проходной тран­зистор. Однако ток покоя (ток, потребляемый интефальной схемой ста­билизатора, и который не протекает через нагрузку) будет намного выше, чем при использовании специальных схем. Это губит саму идею - не вводить дополнительного рассеяния мощности в системе.

Рис. 20.3. Другая схема линейного стабилизатора с малым падением нап­ряжения. Используется та же самая конфигурация с внешним рпр-транзистором. Выбранная управляющая ИС является лучшей с точки зре­ния требуемых вспомогательных функций. Cherry Semiconductor Соф.

Последовательный стабилизатор напряжения непрерывного действия - Регулируемый, с малым падением напряжения

Регулируемый последовательный стабилизатор

Для регулировки выходного напряжения в предыдущей схеме в качестве стабилитрона можно применять интегральный элемент с регулируемым напряжением стабилизации (управляемый стабилитрон). Есть и другой вариант.

Вашему вниманию подборки материалов:

Стабилизатор с низким падением напряжения

Обе предыдущие схемы хорошо работают, если разница между входным и выходным напряжением позволяет сформировать нужное смещение на базе транзистора VT1. Для этого надо минимум несколько вольт. Иногда такое напряжение поддерживать нецелесообразно, например потому, что потери и нагрев силового транзистора пропорциональны этому напряжению. Тогда применяется следующая схема.

Она может работать, даже если разница входного и выходного напряжений составляет всего насколько десятых долей вольта, так как в ней это напряжение не участвует в формировании смещения. Смещение подается через транзистор VT2 с общего провода. Если напряжение на движке подстроечного резистора меньше напряжения стабилизации стабилитрона плюс напряжение насыщения перехода база-эмиттер VT3, то транзистор VT3 закрыт, транзистор VT2 открыт, транзистор VT1 открыт. Когда напряжение на движке резистора превышает сумму напряжения стабилизации стабилитрона и насыщения перехода база-эмиттер VT3, транзистор VT3 открывается и отводит ток от базы VT2. VT2 и VT3 закрываются.

[Напряжение стабилизации стабилитрона, В ] = - [Напряжение насыщения база-эмиттер VT3, В ]

= ([Минимально возможное входное напряжение, В ] - [Напряжение насыщения база-эмиттер VT2, В ]) * * [Минимально возможный коэффициент передачи тока транзистора VT2 ] /

[Сопротивление резистора R2, Ом ] = [Минимальное выходное напряжение, В ] * [Сопротивление резистора R1, Ом ] * [Минимально возможный коэффициент передачи тока транзистора VT3 ] / / 3

[Мощность транзистора VT1, Вт ] = ([Максимально возможное входное напряжение, В ] - [Минимальное выходное напряжение, В ]) * [Максимально возможный выходной ток, А ]

[Мощность транзистора VT2, Вт ] = [Максимально возможное входное напряжение, В ] * [Максимально возможный выходной ток, А ] / [Минимально возможный коэффициент передачи тока транзистора VT1 ]

На транзисторе VT3 и стабилитроне мощность практически не рассеивается.

вызвала много откликов и вопросов. На некоторые вопросы я попытался ответить в комментариях к оригинальной статье. Здесь приведу несколько простейших вариаций на тему данного стабилизатора.Кстати, пока суть да дело я справился построить два 120-Ваттных блока питания, два "бочонка" со стабилизаторами собранным по обсуждаемой схеме.

Рабочий прототип

Окорпусение моих поделок всегда было проблемой. В этот раз, как мне кажется, я удачно выкрутился применив подставки для кухонной утвари из Икеи и кругляк, вырезанный из 6-миллиметровой плиты MDF.

120Ватт из бочонка

Ради чего весь сыр-бор?

Меня частенько называют сумасшедшим 🙂 И правда ведь: сегодня можно подобрать готовый импульсный источник питания практически под любые параметры. Стоить он будет возможно даже не дороже низкочастотного трансформатора, к тому же обычно оказывается и легче и компактней. Я же заплатил кучу деньгов за трансы и потратил несколько вечеров на сборку этих бочек. При том, что у меня уже были все необходимые источники. Итог: 7 импульсных коробочек были отправлены на хранение в подвал.

Открою секрет своего сумасшествия: это моя попытка уменьшить плотность электромагнитных полей в своём обиталище. К примеру микроволновка уже несколько лет тому назад была задарена людям, что выносят мусор из нашего подвала. Правда совесть немного всё же мучает: они ведь теперь облучаются и едят модифицированную пищу. Да и транс там был шикарный на 1килоВатт. 🙂

Вообще тема электромагнитных помех достойна диссера. Наверняка ещё не раз вернусь к ней в блоге...

На картинки можно "кликнуть" для просмотра в более высоком разрешении.

Распаяно "паутинкой" (МГТФ + Kynar)

Вариации на тему

Во всех приводимых ниже набросках сохранена нумерация элементов из .

Две вторичных обмотки + плавный старт

Вкратце я уже предлагал такую модификацию в предыдущей статье. Плавный запуск можно обеспечить добавлением всего лишь одного резистора R9.

Эффективный первичный источник - две вторичных обмотки

Примерный набор компонентов:

  • VD1, VD2 = диоды Шоттки 8A 40В
  • VD5-8 = 0.5A 200В маленький мостик
  • C1 = 15000 мкФ 25 В
  • C2, C3 = 47 мкФ 25 В
  • C4 = 1000 мкФ 35 В
  • R9 = 1 кОм
  • C6 = 0.1 мкФ керамика

Обратите внимание на увеличившуюся ёмкость C4. Совместно с R9 она обеспечивает плавное нарастание напряжения "V++" при включении устройства. Поскольку напряжение на выходе регулятора не может превышать V++ за вычетом порогового напряжения МДП транзистора, данная модификация обеспечивает так же и плавное нарастание выходного напряжения при старте.

Единственная вторичная обмотка + плавный старт

На схеме данной вариации от диодных мостов рябит в глазах 🙂 Спешу напомнить, что собственно умножитель остался без изменений: всё тот же маленький мостик и 3 конденсатора.

В случае, когда в системе уже присутствует какой-либо другой источник положительного напряжения (на несколько вольт выше того, что необходимо получить на выходе данного регулятора) - разумно будет использовать его в качестве "V++". От источника "V++" регулятор потребляет всего лишь несколько миллиампер, что не должно быть слишком обременительно для другого источника. Таким образом можно запросто избавиться от умножителя.

Обойдёмся без ограничителя тока

Без ограничителя тока схема может работать с пренебрежимо малым напряжением падения на проходном транзисторе и по-прежнему обеспечивать большие токи нагрузки, что недоступно ни одному из известных мне на сегодня промышленных LDO регуляторов.

Примерный список номиналов см. ниже.

Пожалуйста, не экономьте на предохранителях. Лучше заменить копеечную стеклянную трубочку с проволочкой, нежели тушить дымящийся трансформатор.
Рекомендую поставить "медленный" предохранитель (с буквой "T" - time) сразу после вторичной обмотки трансформатора. Предохранитель должен быть рассчитан на ток, примерно вдвое больший номинального тока нагрузки. Настоятельно не советую полагаться на предохранитель, стоящий в сетевом проводе, особенно в случае, когда трансформатор имеет несколько вторичных обмоток от которых запитаны разные узлы устройства. В таком случае "дымный" сценарий может быть такой: одна вторичка перегружена и уже дымит, тогда как общее потребление остаётся в пределах нормы, например из-за отключения остальных узлов устройства.

Полная схема регулятора

Просто перерисованная так, чтобы легче читалось, я надеюсь.

Пример номиналов из моего прототипа:

  • R1, R6 = 2.2 кОм
  • R2, R3 = 470 Ом
  • R4 = 0.22 Ом 3Вт
  • R5 = 12 кОм
  • R7 = 2.2 кОм многооборотный
  • C5 = 10 nF керамика
  • VT1 = IRFZ40
  • VT2 = 2N2222
  • VD9 = 1N5244B (стабилитрон на 14В)

Тестируем!

Картинка замечательного устройства, выручавшего меня неоднократно при отладке аудио-усилителей. В этот раз с его помощью оттестировал мои "бочонки", рассчитанные на 12.6V 2A по стабилизированному выходу. Ограничитель тока установлен примерно на 2.5A.


Дальнейшее развитие идеи

  1. Внешний контроль включения в сочетании с плавным стартом;
  2. Термо-регулируемый вентилятор;
  3. Термический предохранитель;
  4. Набор для самостоятельной сборки;
  5. Программируемый источник...

Так что заглядывайте почаще, а лучше - подпишитесь на рассылку 😉

This entry was posted in , by . Bookmark the .

Похожие публикации