Экспертное сообщество по ремонту ванных комнат

Сорбционные явления абсорбция и адсорбция. Определение cорбции и ее виды

Сорбцией (от лат. sorbeo - поглощаю, втягиваю) называют любой процесс поглощения одного вещества (сорбтива) другим (сорбентом), независимо от механизма поглощения. В зависимости от механизма сорбции различают адсорбцию, абсорбцию, хемосорбцию и капиллярную конденсацию.

Адсорбцией называют изменение концентрации вещества на границе раздела фаз. Адсорбция происходит на любых межфазовых поверхностях, и адсорбироваться могут любые вещества. Адсорбционное равновесие, т.е. равновесное распределение вещества между пограничным слоем и граничащими фазами, является динамическим равновесием и быстро устанавливается. Адсорбция уменьшается с повышением температуры.

В ряде случаев поглощение одного вещества другим не ограничивается поверхностным слоем, а происходит во всем объеме сорбента. Такое поглощение называют абсорбцией. Примером процесса абсорбции является растворение газов в жидкостях. Поглощение одного вещества другим, сопровождающееся химическими реакциями, называют хемосорбцией. Так, поглощение аммиака или хлороводорода водой, поглощение влаги и кислорода металлами с образованием оксидов и гидроксидов, поглощение диоксида углерода оксидом кальция - примеры хемосорбционных процессов. Капиллярная конденсация состоит в ожижении паров в микропористых сорбентах. Она происходит вследствие того, что давление паров над вогнутым мениском жидкости в смачиваемых ею узких капиллярах меньше, чем давление насыщенного пара над плоской поверхностью жидкости при той же температуре.

Таким образом, сорбционные процессы различны по их механизму. Однако любой сорбционный процесс начинается с адсорбции на границе соприкасающихся фаз, которые могут быть жидкими, газообразными или твердыми.

Как указывалось в § 106, все самопроизвольные процессы на границах раздела фаз происходят в направлении уменьшения свободной поверхностной энергии. Следовательно, положительная адсорбция, приводящая к повышению концентрации вещества в пограничном слое, возможна только в том случае, если при этом уменьшается величина поверхностного натяжения.

Рассмотрим взаимосвязь поверхностного натяжения растворов с адсорбцией на границе раздела жидкость | газ. Поверхностное натяжение растворов зависит от природы растворителя и растворенного вещества, от концентрации последнего и от температуры. Зависимость поверхностного натяжения растворов при постоянной температуре от концентрации растворенного вещества называют изотермой поверхностного натяжения. Растворенные вещества или понижают поверхностное натяжение растворителя, и в таком случае их называют поверхностно-активными веществами (ПАВ), или повышают поверхностное натяжение {поверхностно-инактивные вещества), или не влияют на величину поверхностного натяжения растворителя (рис. 95). В водных растворах поверхностно-активны полярные органические соединения (спирты, кислоты, амины, фенолы). Поверхностно-инактивно большинство сильных электролитов.

Поверхностно-активные вещества делятся на две большие подгруппы: 1) истинно растворимые в воде и 2) мицеллярные коллоиды.

ПАВ первой подгруппы представляют собой дифильные молекулы с короткими углеводородными радикалами, а ПАВ второй подгруппы - дифильные молекулы с длинными углеводородными радикалами, малорастворимые в воде.

Разность концентраций растворенного вещества в поверхностном слое и в таком же слое внутри объема раствора называют поверхностным избытком этого вещества и обозначают греческой буквой Г («гам-

Рис.

Рис.

Структура поверхностного слоя: а - чистый растворитель; б - ненасыщенный мономолекулярный слой ПАВ; в - насыщенный мономолекулярный слой ПАВ

(а - поверхностное натяжение, C - концентрация раствора): 1,2 - растворы поверхностноактивных веществ (ПАВ) с большей (/) и меньшей (2) поверхностной активностью; 3 - раствор поверхностноактивного вещества ма»). ПАВ положительно адсорбируются в поверхностном слое, и, следовательно, для них Г > 0, поскольку это приводит к уменьшению поверхностного натяжения. Напротив, поверхностно-инактивные вещества адсорбируются отрицательно, т.е. их концентрация в поверхностном слое меньше, чем в объеме раствора (Г

Пример изотермы адсорбции для поверхностно-активного вещества показан на рис. 96. Как видно, с увеличением концентрации раствора Г достигает предельного значения (T 00), когда весь поверхностный слой занят молекулами ПАВ, вытеснившими молекулы растворителя. В таких насыщенных мономолекулярных поверхностных слоях молекулы ПАВ правильно ориентированы - своей полярной группой к полярной фазе (например, воде), а неполярным углеводородным радикалом - к неполярной фазе (например, воздуху), образуя подобие частокола.

Аналогично изменяется пограничное натяжение и происходит адсорбция третьего компонента на границе двух несмешивающихся жидкостей.

Адсорбция газов и паров на поверхности твердых тел также происходит в результате уменьшения свободной поверхностной энергии. Ввиду трудности измерения поверхностного натяжения твердых тел об адсорбции на них судят, непосредственно определяя количество адсорбированного вещества. Последнее тем больше, чем больше поверхность адсорбента. Поэтому для осуществления адсорбционных процессов весьма важно создание высокопористых адсорбентов с развитой внутренней поверхностью, которую характеризуют удельной поверхностью, т.е. поверхностью, приходящейся на 1 г сорбента. Важнейшими пористыми сорбентами являются активный уголь и силикагель. Поглощающая способность угля подмечена еще в XVIII в. Однако лишь в 1915 г. Н.Д. Зелинский разработал способ получения активных углей , предложив их в качестве универсальных поглотителей отравляющих веществ, и совместно с Э.Л. Кумантом сконструировал угольный противогаз с резиновой маской. Один из первых способов активирования древесного угля состоял в обработке его перегретым паром для удаления смолистых веществ, образующихся при сухой перегонке древесины и заполняющих поры в обычном угле.

Современные методы получения и исследования активных углей в нашей стране разработаны М.М. Дубининым . Удельная поверхность активных углей достигает 1000 м 2 на грамм. Активный уголь является гидрофобным адсорбентом, плохо поглощает пары воды и очень хорошо - углеводороды.

Для поглощения паров воды широко применяют гидрофильный адсорбент, представляющий собой аэрогель обезвоженной кремниевой кислоты и получивший название силикагеля. Промышленность изготовляет ряд марок силикагеля с различным размером и распределением пор.

В отличие от поверхности жидкостей, не все точки поверхностей твердых тел равноценны в отношении их адсорбционной способности. При малых концентрациях газов адсорбция происходит мономолеку- лярно по наиболее активным участкам адсорбента - его «активным центрам», представляющим собой отдельные атомы или группы атомов поверхности, силовое поле которых наименее насыщенно. При адсорбции газов, находящихся при температурах ниже их критической температуры, мономолекулярная адсорбция с увеличением давления может переходить в полимолекулярную.

Повышение температуры и понижение давления приводят к десорбции газов и паров. Вследствие этого сорбционно-десорбционные методы широко применяют в промышленности для извлечения различных веществ из воздушной среды, а также для разделения газов и паров.

При адсорбции растворенных веществ из растворов на твердых адсорбентах всегда, в той или иной степени, происходит также адсорбция растворителей. Поэтому адсорбция из растворов носит конкурентный характер между поглощением растворенных веществ и растворителя. Адсорбироваться могут как растворенные неэлектролиты, так и электролиты. В связи с этим различают молекулярную и ионную адсорбцию из растворов.

C целью уменьшения адсорбции растворителя при молекулярной сорбции из водных растворов обычно применяют гидрофобный адсорбент - активный уголь, а при сорбции из неполярных растворителей (углеводородов) гидрофильный адсорбент - силикагель. Адсорбция протекает по активным центрам адсорбента, часто мономолекулярно и высокоизбирательно. Изотермы молекулярной адсорбции из растворов, так же как газов и паров, имеют вид кривой, приведенной на рис. 96. Десорбцию, осуществляемую с помощью жидкостей, обычно называют элюцией, а жидкости или растворы, применяемые для этих целей, элюентами.

Сорбция может происходить в статических или в динамических условиях. Сорбцию называют статической, когда поглощаемое вещество (сорбтив), находящееся в газообразной или жидкой фазе, приведено в контакт с неподвижным сорбентом или перемешивается с ним. Статическую активность сорбента характеризуют количеством поглощенного вещества на единицу массы сорбента в определенных условиях.

Динамической сорбцию называют в том случае, когда поглощаемое вещество находится в подвижной жидкой или газообразной фазе, которая фильтруется через слой сорбента. Динамическую активность адсорбента характеризуют временем от начала пропускания адсорбтива до его проскока, т.е. до появления его за слоем адсорбента (Н.А. Шилов, 1917 г.). В промышленности сорбционно-десорбционные процессы, как правило, осуществляют в динамических условиях, так как это обеспечивает непрерывность технологических процессов и возможность их автоматизации.

  • Николай Дмитриевич Зелинский (1861 - 1953) - академик, основатель крупной школы химиков-органиков. Ему принадлежат классические работы в области органического катализа, а также по химии нефти и получению из нее многих ценныхпродуктов.
  • Михаил Михайлович Дубинин (1901-1993) - академик, лауреат Государственных премий, глава крупной научной школы в области сорбции. Внес большой вкладв разработку современных представлений о механизме сорбции газов и паров, а такжеметодов получения и исследования сорбентов.

Основные понятия

Поглощаемое вещество, ещё находящееся в объёме фазы, называют адсорбтив , поглощённое - адсорбат . В более узком смысле под адсорбцией часто понимают поглощение примеси из газа или жидкости твёрдым веществом (в случае газа и жидкости) или жидкостью (в случае газа) - адсорбентом . При этом, как и в общем случае адсорбции, происходит концентрирование примеси на границе раздела адсорбент-жидкость либо адсорбент-газ. Процесс, обратный адсорбции, то есть перенос вещества с поверхности раздела фаз в объём фазы, называется десорбция . Если скорости адсорбции и десорбции равны, то говорят об установлении адсорбционного равновесия . В состоянии равновесия количество адсорбированных молекул остается постоянным сколь угодно долго, если неизменны внешние условия (давление, температура и состав системы) .

Адсорбция и хемосорбция

На поверхности раздела двух фаз помимо адсорбции, обусловленной в основном физическими взаимодействиями (главным образом это Ван-дер-Ваальсовы силы), может идти химическая реакция. Этот процесс называется хемосорбцией . Чёткое разделение на адсорбцию и хемосорбцию не всегда возможно. Одним из основных параметров по которым различаются эти явления является тепловой эффект: так, тепловой эффект физической адсорбции обычно близок к теплоте сжижения адсорбата, тепловой эффект хемосорбции значительно выше. Кроме того в отличие от адсорбции хемосорбция обычно является необратимой и локализованной. Примером промежуточных вариантов, сочетающих черты и адсорбции и хемосорбции является взаимодействие кислорода на металлах и водорода на никеле: при низких температурах они адсорбируются по законам физической адсорбции, но при повышении температуры начинает протекать хемосорбция.

Схожие явления

В предыдущем разделе говорилось о случае протекания гетерогенной реакции на поверхности- хемосорбции. Однако бывают случаи гетерогенных реакций по всему объему, а не только на поверхности- это обычная гетерогенная реакция. Поглощение по всему объёму может проходить и под воздействием физических сил- этот случай называется абсорбцией.

Физическая адсорбция

Модели физической адсорбции
Образование монослоя Энергетическая диаграмма

Рис. 1: a) адсорбент, b) адсорбат, c) адсорбтив (газовая фаза или раствор) Рис. 2: a) адсорбент, b) адсорбат, c) газовая фаза, d - расстояние, E - энергия, E b - энергия адсорбции, (1) десорбция, (2) адсорбция
Поликонденсация Избирательная адсорбция
Рис. 3: a) адсорбент, b) адсорбат, c) конденсат, d) адсорбтив (газовая фаза или раствор) Рис. 4: a) адсорбент, b) адсорбат, c) адсорбтивы (газовая фаза или раствор): показана преимущественная адсорбция частиц голубого цвета

Причиной адсорбции являются неспецифические (то есть не зависящие от природы вещества) Ван-дер-Ваальсовы силы . Адсорбция, осложнённая химическим взаимодействием между адсорбентом и адсорбатом, является особым случаем. Явления такого рода называют хемосорбцией и химической адсорбцией . «Обычную» адсорбцию в случае, когда требуется подчеркнуть природу сил взаимодействия, называют физической адсорбцией .

Физическая адсорбция является обратимым процессом, условие равновесия определяется равными скоростями адсорбции молекул адсорбтива P на вакантных местах поверхности адсорбента S * и десорбции - освобождения адсорбата из связанного состояния S − P :

;

уравнение равновесияя в таком случае:

, ,

где - доля площади поверхности адсорбента, занятая адсорбатом, - адсорбционный коэффициент Ленгмюра, а P - концентрация адсорбтива.

Поскольку и, соответственно, , уравнение адсорбционного равновесия может быть записано следующим образом:

Уравнение Ленгмюра является одной из форм уравнения изотермы адсорбции. Под уравнением изотермы адсорбции (чаще применяют сокращённый термин - изотерма адсорбции) понимают зависимость равновесной величины адсорбции от концентрации адсорбтива a=f(С) при постоянной температуре (T=const ). Концентрация адсорбтива для случая адсорбции из жидкости выражается, как правило, в мольных либо массовых долях. Часто, особенно в случае адсорбции из растворов, пользуются относительной величиной: С/С s , где С - концентрация, С s - предельная концентрация (концентрация насыщения) адсорбтива при данной температуре. В случае адсорбции из газовой фазы концентрация может быть выражена в единицах абсолютного давления, либо, что особенно типично для адсорбции паров, в относительных единицах: P/P s , где P - давление пара, P s - давление насыщенных паров этого вещества. Саму величину адсорбции можно выразить также в единицах концентрации (отношение числа молекул адсорбата к общему числу молекул на границе раздела фаз). Для адсорбции на твёрдых адсорбентах, особенно при рассмотрении практических задач, используют отношение массы или количества поглощённого вещества к массе адсорбента, например мг/г или ммоль/г.

Значение адсорбции

Адсорбция - всеобщее и повсеместное явление, имеющее место всегда и везде, где есть поверхность раздела между фазами. Наибольшее практическое значение имеет адсорбция поверхностно-активных веществ и адсорбция примесей из газа либо жидкости специальными высокоэффективными адсорбентами. В качестве адсорбентов могут выступать разнообразные материалы с высокой удельной поверхностью: пористый углерод (наиболее распространённая форма - активированный уголь), силикагели , цеолиты а также некоторые другие группы природных минералов и синтетических веществ.

Установка для проведения адсорбции называется адсорбером .

См. также

  • Азотные установки адсорбционные

Примечания

Литература

  • Фролов Ю. Г. Курс коллоидной химии. Поверхностные явления и дисперсные системы. - М.: Химия, 1989. - 464 с.
  • Кельцев Н. В. Основы адсорбционной техники. - М.: Химия, 1984. - 592 с.
  • Грег С., Синг К. Адсорбция, удельная поверхность, пористость. - М.: Мир, 1984. - 310 с.*
  • Адамсон А. Физическая химия поверхностей. – М.: Мир. 1979. – 568 с.
  • Оура К., Лифшиц В. Г., Саранин А. А. и др. Введение в физику поверхности / Под ред. В. И. Сергиенко. - М.: Наука, 2006. - 490 с.
  • Карнаухов А.П. Адсорбция. Текстура дисперсных и пористых материалов. - Новосибирск: Наука. 1999. - 470 с.
  • Химическая энциклопедия. Т. 1. - М.: Советская энциклопедия, 1990. - 623 с.
  • Полторак О.М. Термодинамика в физической химии. - М.: Высшая школа, 1991. - 319 с.

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.
  • Адсорбция на сайте «

Адсорбция -процесс изменения концентрации у поверхности раздела двух фаз, а в более узком и употребительном- это повышение концентрации одного вещества у поверхности раздела двух фаз, из которых одна обычно является твердым телом.

Поглощаемое вещество, ещё находящееся в объёме фазы, называют адсорбтив, поглощённое - адсорбат. В более узком смысле под адсорбцией часто понимают поглощение примеси из газа или жидкости твёрдым веществом - адсорбентом. При этом, как и в общем случае адсорбции, происходит концентрирование примеси на границе раздела адсорбент-жидкость либо адсорбент-газ. Процесс, обратный адсорбции, то есть перенос вещества с поверхности раздела фаз в объём фазы, называется десорбция.

Абсорбция- поглощения сорбата всем объёмом сорбента. Абсорбция - частный случай сорбции.

Абсорбция, как правило, означает поглощение газов в объёме жидкости или реже твёрдого тела. Поглощение твёрдым абсорбентом, например, водорода палладием, называют окклюзией. Для процесса поглощения молекул газа или жидкости поверхностью твёрдого тела в русском языке используется термин адсорбция.

На практике абсорбции подвергают не отдельные газы, а газовые смеси, составные части которых поглощаются жидкостью. Эти составные части смеси называют абсорбируемыми компонентами (абсорбат), а непоглощаемые части - инертным газом.

Поверхностное натяжение – избыток свободной энергии в поверхностном слое, отнесенный к поверхности поглощающего тела. Поверхностное растяжение растворов зависит от природы растворителя и растворенного вещества, от концентрации последнего и от температуры. Поверхностное натяжение как функция концентрации растворенного вещества при Т-const - изотерма поверхностного натяжения.

1 и 2 – поверхностно-активные вещества (ПАВ).3 – поверхностно-инактивные вещества (ПИАВ). Разность с в поверхностном слое– поверхностный избыток вещества Г (гамма).Для ПАВ Г>0, для ПИАВ Г<0.Поверхность твердых тел, как и жидкостей, обладает избыточной свободной энергией Гиббса. Твердые тела не могут (в отличие от жидкостей) самопроизвольно изменять площадь поверхности.Величина адсорбции зависит от природы адсорбента и адсорбата, от давления газа, температуры.Зависимость адсорбируемого количества газа от давления адсорбата при постоянной температуре – изотерма адсорбции. С ростом давления увеличивается количество адсорбируемого вещества.Лэнгмюр при выводе уравнения изотермы сделал следующие допущения: 1. все места адсорбента одинаковы. 2. взаимодействие между частицами пренебрежимо мало. 3. адсорбционный слой состоит из одного слоя молекул, адсорбция локализованная – нет перемещения адсорбционного комплекса вдоль поверхности адсорбента.Степень заполнения адсорбента адсорбатом: Скорость адсорбции: константа скорости адсорбции.Скорость десорбции: константа скорости десорбции.Адсорбционное равновесие наступает при Уравнение изотермы хорошо передает зависимости в области низких и области высоких давлений, но не всегда оправдывается в промежуточной области.Процесс адсорбции экзотермичен: поглощение вещества протекает с выделением теплоты, десорбция – с поглощением теплоты.Если адсорбируются несколько газов: Для адсорбции на неоднородной поверхностибыло предложено эмпирическое уравнение Фрейндлиха. к и n – коэффициенты, постоянные для данного адсорбента и газа при данной температуре. Уравнение Фрейндлиха, наоборот, не отражает особенностей изотермы в области высоких и низких давлений, но для области промежуточных давлений согласуются с опытными данными.

Лекция №20

Адсорбцией называют поглощение газов, паров и жидкостей твердыми пористыми телами, носящими название адсорбентов; адсорбируемое вещество, находящееся в газе или жидкости, называют адсорбтивом , а после его перехода в фазу адсорбента – адсорбатом . Используемые на практике адсорбенты обладают сильно развитой внутренней поверхностью (до 1000 м 2 /г), образующейся путем специальной обработки или синтеза твердых материалов.

Механизм процесса адсорбции отличается от механизма абсорбции, так как извлечение вещества осуществляется твердым, а не жидким поглотителем.

Адсорбцию подразделяют на два вида: физическую и химическую. Физическая адсорбция в основном обусловлена поверхностными вандерваальсовыми силами, которые проявляются на расстояниях, значительно превышающих размеры адсорбируемых молекул, поэтому на поверхности адсорбента обычно удерживаются несколько слоев молекул адсорбата. При химической адсорбции поглощаемое вещество вступает в химическое взаимодействие с адсорбентом с образованием на его поверхности обычных химических соединений.

Силы притяжения возникают на поверхности адсорбента благодаря тому, что силовое поле поверхностных атомов и молекул не уравновешенно силами взаимодействия соседних частиц. По физической природе силы взаимодействия молекул поглощаемого вещества и адсорбента относятся в основном к дисперсионным, возникающим благодаря перемещению электронов в сближающихся молекулах. В ряде случаев адсорбции большое значение имеют электростатические и индукционные силы, а также водородные связи.

Заполнение адсорбатом поверхности адсорбента частично уравновешивает поверхностные силы и вследствие этого снижает поверхностное натяжение (свободную удельную поверхностную энергию). Поэтому адсорбция является самопроизвольным процессом, течение которого сопровождается уменьшением свободной энергии и энтропии системы.

Процессы адсорбции избирательны и обратимы. Процесс, обратный адсорбции, называют десорбцией , которую используют для выделения поглощенных веществ и регенерации адсорбента.

Наиболее рационально адсорбцию применять для обработки смесей с низкой концентрацией извлекаемых веществ. В этом случае увеличивается продолжительность работы адсорбционного аппарата – адсорбера – на стадии собственно адсорбции до его переключения на десорбцию.

Типичными примерами адсорбции являются осушка газов и жидкостей, разделение смесей углеводородов, рекуперация растворителей, очистка вентиляционных выбросов и сточных вод и т.п. За последнее время значение адсорбции существенно возросло, особенно в связи с решением экологических проблем и проблем получения особо чистых веществ .



8.1. Основные промышленные адсорбенты и их свойства

Основными промышленными адсорбентами являются пористые тела, обладающие большим объемом микропор. Свойства адсорбентов определяются природой материала, из которого они изготовлены, и пористой внутренней структурой.

В промышленных адсорбентах основное количество поглощенного вещества сорбируется на стенках микропор (r < 10–9 м). Роль переходных пор (10–9 < r < 10–7 м) и макропор (r > 10–7 м) в основном сводится к транспортированию адсорбируемого вещества к микропорам.

Адсорбенты характеризуются своей поглотительной , или адсорбционной , способностью , определяемой максимально возможной концентрацией адсорбтива в единице массы или объема адсорбента. Величина поглотительной способности зависит от типа адсорбента, его пористой структуры, природы поглощаемого вещества, его концентрации, температуры, а для газов и паров – от их парциального давления. Максимально возможную при данных условиях поглотительную способность адсорбента условно называют равновесной активностью .

По химическому составу все адсорбенты можно разделить на углеродные и неуглеродные . К углеродным адсорбентам относятся активные (активированные) угли, углеродные волокнистые материалы, а также некоторые виды твердого топлива. Неуглеродные адсорбенты включают в себя силикагели, активный оксид алюминия, алюмогели, цеолиты и глинистые породы.

Активные угли, состоящие из множества беспорядочно расположенных микрокристаллов графита, обычно используют для поглощения органических веществ в процессах очистки и разделения жидкостей и газов (паров). Эти адсорбенты получают сухой перегонкой ряда углеродсодержащих веществ (древесины, каменного угля, костей животных, косточек плодов и др.) с целью удаления летучих. После этого уголь активируют, например прокаливают его при температуре 850–900 °С, что приводит к освобождению пор от смолистых веществ и образованию новых микропор. Активацию проводят также экстрагированием смол из пор органическими растворителями, окислением кислородом воздуха и др. Более однородная структура углей получается при их активации химическими методами: путем их обработки горячими растворами солей (например, сульфатами, нитратами и др.) или минеральными кислотами (серной, азотной и др.).

Удельная поверхность активных углей очень высока и составляет 6×105–17×105 м2/кг, а их насыпная плотность 200–900 кг/м3. Активные угли применяют в виде частиц неправильной формы размером 1–7 мм, цилиндров диаметром 2–3 мм и высотой 4–6 мм и порошка с размером частиц менее 0,15 мм. Последний вид активных углей применяют для разделения растворов.

К основным недостаткам активных углей относится их горючесть и невысокая механическая прочность.

Силикагель – обезвоженный гель кремниевой кислоты () – используют для адсорбции полярных соединений. Его применяют в процессах осушки газов и жидкостей, при разделении органических веществ в газовой фазе и в хроматографии. Силикагель получают обработкой раствора силиката натрия (растворимое стекло) серной кислоты (иногда хлороводородной) или растворами солей, имеющих кислую реакцию. Образовавшийся гель промывают водой и сушат до конечной влажности 5–7 %, так как при такой влажности силикагель обладает наибольшей адсорбционной способностью. Удельная поверхность силикагеля составляет 4×105–7,7×105 м2/кг, насыпная плотность – 400–800 кг/м3. Размер частиц неправильной формы изменяется в довольно широком интервале – от 0,2 до 7 мм.

К достоинствам силикагелей относится их негорючесть и большая механическая прочность, чем у активных углей. Недостатком силикагелей по сравнению с активными углями является, помимо их более низкой удельной поверхности, резкое снижение поглотительной способности по отношению к парам органических веществ в присутствии влаги.

По сорбционным свойствам к силикагелю близко примыкают алюмогели , получаемые термической обработкой гидроксида алюминия при температурах 600–1000 °С. Поры полученного сорбента (92 % ) имеют диаметр 1–3 нм, удельную поверхность 2×10 5 –4×10 5 м 2 /кг; насыпная плотность такого сорбента 1600 . Алюмогели используют для осушки газов, очистки водных растворов и минеральных масел, применяют в качестве катализаторов и их носителей.

Цеолиты представляют собой природные или синтетические минералы, которые являются водными алюмосиликатами, содержащими оксиды щелочных и щелочноземельных металлов. Эти адсорбенты отличаются регулярной структурой пор, размеры которых соизмеримы с размерами поглощаемых молекул. Особенность цеолитов состоит в том, что адсорбционные поверхности соединены между собой окнами определенного диаметра, через которые могут проникать только молекулы меньшего размера. На этом основано разделение смесей с разными по размеру молекулами, что послужило причиной называть цеолиты молекулярными ситами .

Для разделения газовых смесей применяют цеолиты в виде шариков или гранул размером от 1 до 5 мм, а для разделения жидких смесей – в виде мелкозернистого порошка.

Особенно широко цеолиты используют для глубокой осушки газов и жидкостей, в процессах очистки и разделения смесей веществ с близкой молекулярной массой, а также в качестве катализаторов и их носителей.

Для очистки жидкостей от различных примесей в качестве адсорбентов применяют природные глинистые породы. Эти глины для их активации обрабатывают серной или хлороводородной кислотами и получают адсорбент с удельной поверхностью пор порядка (1,0÷1,5)·10 5 м 2 /кг. Также для очистки жидкостей могут применяться некоторые виды торфов.

Отметим, что адсорбенты характеризуются еще статической и динамической активностью. Под статической активностью понимают количество вещества, поглощенного единицей массы или объема адсорбента от начала адсорбции до установления равновесия. Этот вид активности определяют в статических условиях, т.е. без движения смеси газов или раствора. При движении смеси сквозь слой адсорбента через определенный промежуток времени адсорбент перестает полностью поглощать извлекаемый компонент, и происходит «проскок» этого компонента с последующим увеличением концентрации компонента в уходящей из слоя смеси вплоть до наступления равновесия. Количество вещества, поглощенного единицей массы или объема адсорбента до начала проскока, называют динамической активностью адсорбента. Динамическая активность всегда меньше статической, поэтому количество адсорбента определяют по его динамической активности.

Равновесие при адсорбции

Равновесная концентрация (кг/кг чистого адсорбента) поглощаемого вещества в адсорбенте может быть представлена в виде функции концентрации с и температуры Т :

или в виде функции парциального давления р и температуры Т в случае адсорбции газов:

где с – концентрация адсорбтива в объемной фазе, кг/м3; р – парциальное давление адсорбтива в объемной фазе, Па.

Между концентрацией адсорбируемого вещества в газовой смеси и его парциальным давлением р , согласно уравнению Клапейрона, существует прямая пропорциональность:

где R – газовая постоянная, Дж/(кг·К).

Зависимость или при постоянной температуре называется изотермой адсорбции .

Изотермы адсорбции изображаются кривыми, форма которых определяется в основном природой адсорбата и адсорбента и его пористой структурой. Из всего многообразия форм изотерм для анализа процессов адсорбции следует выделить выпуклую и вогнутую (рис. 8.1). Важно отметить, что начальные участки изотерм линейны.

Равновесные зависимости описываются рядом эмпирических и теоретических уравнений. Наиболее плодотворной для описания равновесия адсорбционных процессов оказалась теория объемного заполнения пор, явившаяся развитием потенциальной теории адсорбции.

Под адсорбционным потенциалом А понимают работу, совершаемую адсорбционными силами при переносе одного моля адсорбтива из равновесной газовой фазы давлением р на поверхность адсорбционной пленки, давление над которой принимается равным давлению насыщенного пара адсорбтива pS при рассматриваемой Т .

Рис. 8.1. Выпуклая и вогнутая изотермы адсорбции

Адсорбционный потенциал выражается соотношением

(8.2)

В процессе адсорбции объем микропор V п заполняется адсорбатом, объем которого может быть вычислен через величину равновесной адсорбции:

(8.3)

где М – молекулярная масса адсорбата; V – молярный объем адсорбата.

Установлено, что для разных веществ, адсорбирующихся на одном адсорбенте, отношение адсорбционных потенциалов при одинаковых значениях V п постоянно и равно коэффициенту аффинности b, представляющему собой отношение молярных объемов в жидком состоянии, или парахоров, данного и стандартного вещества, значение которого находят в справочнике.

Для ряда микропористых адсорбентов распределение различных заполненных участков адсорбционных объемов имеет вид распределения Гаусса:

(8.4)

где W 0 – общий объем микропор; Е – параметр функции распределения.

При совместном решении уравнений (8.2) и (8.3) с учетом коэффициента аффинности получено уравнение, описывающее изотермы адсорбции для микропористых адсорбентов с однородной пористой структурой (синтетические цеолиты):

Для адсорбентов со сложными микропористыми структурами (микропористые силикагели, активные угли)

(8.6)

где – константы характеризующие адсорбент; Т – температура.

Наряду с соотношениями, основанными на теории объемного заполнения пор, для описания адсорбционного равновесия используют ряд других уравнений, среди которых наиболее известно уравнение Ленгмюра.

Абсорбцией называется процесс разделения, основанный на избирательном поглощении газов или паров жидкими поглотителями - адсорбентами.

При физической абсорбции поглощаемый газ (абсорбтив) не взаимодействует химически с абсорбентом. Если же абсорбтив образует с абсорбентом химическое соединение, то процесс называется хемосорбцией.

Физическая абсорбция обратима. На этом свойстве абсорбционных процессов основано выделение поглощенного газа из раствора - десорбция.

Сочетание абсорбции и десорбции позволяет многократно применять поглотитель (абсорбент) и выделять поглощенный компонент в чистом виде.

Примерами использования процессов абсорбции в химической технологии и технике могут быть разделение углеводородных газов на нефтеперерабатывающих установках, получение соляной кислоты, аммиачной воды, очистка отходящих газов с целью улавливания ценных продуктов или обезвреживание газовых выбросов и т. п.

Адсобция

Адсорбция- увеличение концентрации растворенного вещества у поверхности раздела двух фаз (твердая фаза-жидкость, конденсированная фаза - газ) вследствие нескомпенсированности сил межмолекулярного взаимодействия на разделе фаз. Адсорбция является частным случаем сорбции, процесс, обратный адсорбции - десорбция.

Основные понятия

Поглощаемое вещество, ещё находящееся в объёме фазы, называют адсорбтив, поглощённое -- адсорбат. В более узком смысле под адсорбцией часто понимают поглощение примеси из газа или жидкости твёрдым веществом (в случае газа и жидкости) или жидкостью (в случае газа) -- адсорбентом. При этом, как и в общем случае адсорбции, происходит концентрирование примеси на границе раздела адсорбент-жидкость либо адсорбент-газ. Процесс, обратный адсорбции, то есть перенос вещества с поверхности раздела фаз в объём фазы, называется десорбция. Если скорости адсорбции и десорбции равны, то говорят об установлении адсорбционного равновесия. В состоянии равновесия количество адсорбированных молекул остается постоянным сколь угодно долго, если неизменны внешние условия (давление, температура и состав системы)

Физическая адсорбция

Причиной адсорбции являются неспецифические (то есть не зависящие от природы вещества)Ван-дер-Ваальсовы силы. Адсорбция, осложнённая химическим взаимодействием между адсорбентом и адсорбатом, является особым случаем. Явления такого рода называютхемосорбцией и химической адсорбцией. «Обычную» адсорбцию в случае, когда требуется подчеркнуть природу сил взаимодействия, называют физической адсорбцией.

Адсорбция -- всеобщее и повсеместное явление, имеющее место всегда и везде, где есть поверхность раздела между фазами. Наибольшее практическое значение имеет адсорбция поверхностно-активных веществ и адсорбция примесей из газа либо жидкости специальными высокоэффективными адсорбентами. В качестве адсорбентов могут выступать разнообразные материалы с высокой удельной поверхностью: пористый углерод (наиболее распространённая форма --активированный уголь), силикагели, цеолиты а также некоторые другие группы природных минералов и синтетических веществ.

Адсорбция (особенно хемосорбция) имеет также важное значение в гетерогенном катализе. Пример адсорбционных установок приведён на странице азотные установки.

Установка для проведения адсорбции называется адсорбером.

Кристаллизация

Кристаллизация- получение (образование) вещества в кристаллическом виде. Из трех главнейших случаев образования кристаллов--при возгонке, из расплавленного состояния, из растворов--последний имеет наибольшее значение. Обычно пользуются:

  • 1. Медленным испарением растворителя.
  • 2.. Добавлением третьего вещества, смешивающегося с растворителем и уменьшающего растворимость в нем кристаллизуемого вещества; к раствору (обычно горячему) прибавляют осадителя до появления мути и оставляют стоять; так например к спиртовому раствору прибавляют воду, к эфирному раствору -- петролейный эфир, к фенолу--спирт и т. д.
  • 3. Охлаждением насыщенного горячего раствора; вещество растворяют в подходящем растворителе при нагревании и помешивании, причем берут растворителя лишь немногим больше, чем нужно для растворения, и фильтруют горячим (лучше через нагревательную воронку); при охлаждении выделяются кристаллы.

Покой и медленное остывание способствуют росту кристаллов, однако величина кристаллов зависит также от природы вещества. При желании получить количество кристаллов большее, чем это возможно при охлаждении до комнатной t°, пользуются охладительной смесью, но при этом необходимо применять в качестве растворителя жидкости, не замерзающие при низкой t°, напр. сероуглерод, спирт, эфир, петролейный эфир. Часто бывает возможным вызвать К. вещества, выделившегося в виде масла, внося в него («заражая») кристаллик этого вещества, а иногда даже вещества, близкого ему по хим. строению. Потирание стенки сосуда стеклянной палочкой также ускоряет или вызывает К. Применяется К. с целью очищения вещества или получения его свежевыкристаллизованным с содержанием определенного количества «кристаллизационного» растворителя--воды, спирта, хлороформа и др.

В нек-рых случаях для выделения вещества в химически индивидуальном виде прибегают к К. его хорошо кристаллизующихся простейших производных: солей, ацетильных, бензольных и др. производных. Очень редким является образование хорошо кристаллизующегося двойного соединения индиферентного органического вещества, напр. соединения глюкозы и хлористого натрия: 2С6Н1206 + МаС1 + НгО. Некоторые вещества, например белки, могут быть получены в кристаллической форме высаливанием (см.). При очищении вещества К. (нередко многократно) исходят из того предположения, что кристаллизующееся вещество может быть отделено от примеси вследствие неодинаковой растворимости в подходящем растворителе. В нек-рых случаях удается получить чистое вещество лишь фракционированной К. Наблюдаются случаи неразделимых кристаллизацией смесей и образование смешанных кристаллов.--К. обычно ведут в кристаллизаторах--тонкостенных низких стаканах--или в чашках.-- Полученные кристаллы освобождают от маточного раствора промыванием на Бухнеров-ской воронке или выкладывают их на не-глазированную фарфоровую пластинку или фильтровальную бумагу, впитывающие маточный раствор, и, если нужно, отжимают между листьями фильтровальн. бумаги.

При сгущении маточного раствора или при добавлении к нему осадителя или совместным действием того и другого могут быть получены дальнейшие порции кристаллов. При выборе растворителя необходимо иметь в виду, чтобы он не влиял химически на подлежащие кристаллизации вещества и не содержал вредящих К. примесей и чтобы в случае К. охлаждением горячего раствора растворимость вещества в горячем растворителе достаточно резко отличалась от растворимости в холодном. Наиболее употребительными растворителями являются вода, этиловый, метиловый и амиловый ал-коголи, эфир, бензол, хлороформ, ацетон, уксусная к-та, петролейный эфир, фенол, пиридин, сероуглерод, H2S04 и друг.

Для микроскоп, исследования вещество выкристаллизовывают на предметном стекле, т. к. даже при осторожном переносе на предметное стекло кристаллы повреждаются. На предметное стекло наносят каплю концентрированного раствора испытуемого вещества, закрывают покровным стеклом и оставляют на воздухе или, если вещество легко расплывается, в эксикаторе и исследуют образовавшиеся кристаллы под микроскопом.

Похожие публикации