Экспертное сообщество по ремонту ванных комнат

Расчет длины теплообменника. Основы расчета теплообменных аппаратов

Данный online расчёт теплообменника сформирует запрос на подбор теплообменного аппарата для системы отопления, а также отправит его производителям пластинчатых теплообменников, разумеется при вашем желании.

Подбор теплообменника

Подбор теплообменника предполагает выбор формы, размеров и количества пластин, а также схемы их укладки в блок теплообменного аппарата. При этом из-за многообразия вариаций даже у одного производителя теплообменников на каждый запрос может быть подобранно несколько различных теплообменных аппаратов.

Пластины для теплообменников изготовленные различными производителями, даже при схожих размерах, не являются взаимозаменяемыми и обладают свойственными только им теплотехническими особенностями, поэтому и подбираются по индивидуальным методикам. Производители теплообменников не раскрывают методики подбора даже своим региональным партнёрам, предоставляя им лишь программное обеспечение, которое после ввода исходных данных выдаёт готовый результат.

Поэтому данный online расчёт поможет вам корректно сформировать запрос на подбор теплообменника и при вашем желании сразу отправит его нескольким производителям.

Расчёт теплообменника для системы отопления

Рассчитывая пластинчатый теплообменник пренебрегают незначительными потерями с корпуса считая, что всё тепло отданное теплоносителем в греющем контуре переходит к теплоносителю в нагреваемом контуре, поэтому в расчёте всегда должен соблюдаться тепловой баланс.

Проверить правильность теплового баланса между греющим и нагреваемым контуром можно по простой формуле.

Q [кВт] = 1.163 · G [т/ч] · dt [°C]

Полученные значения количества тепла после подстановки параметров греющего и нагреваемого контуров должны быть равны.

При расчёте пластинчатого теплообменника для системы отопления исходными являются величины тепловой мощности системы отопления и расчётный температурный график системы отопления и источника тепла. В результате расчёта определят расход теплоносителя в греющем и нагреваемом контурах.

Основной особенностью расчёта теплообменника для системы отопления является то, что теплообменный аппарат должен обеспечивать корректную работу как на максимальном, так и на переходном режимах эксплуатации.

Максимальным режимом при подборе теплообменника считается режим с расчётной для системы отопления температурой наружного воздуха (для Киева это -22°C). В расчётном режиме от источника тепла приходит теплоноситель с максимальной температурой на пике температурного графика (если источником является тепловая сеть, то это может быть 120/70°C, то есть в подаче 120°C, а в обрате 70 °C, а в автономной котельной может быть принят график 95/70 °C), так и в систему отопления вода поступает с максимальной температурой на пике температурного графика например 90/70°C или 80/60 °C, в зависимости от того какой принят при её расчёте.

Переходным режимом считается режим со средней температурой наружного воздуха за отопительный период в местности где предполагается установка теплообменника (для Киева это -0.1°C). Температуры теплоносителя в переходном режиме на вводе источника тепла и на входе в систему отопления соответственно ниже и определяются по при соответствующей температуре наружного воздуха.

Для жителей Украины доступна опция выбора города, при этом температуры наружного воздуха для расчётного и переходного режимов будут выбраны автоматически по ДСТУ-Н Б В.1.1-27:2010 "Строительная климатология", а для жителей других стран придётся ввести температуры вручную.

Несколько распространённых ошибок при заполнении формы расчёта

1 Температура греющей воды на выходе из теплообменника должна быть больше температуры нагреваемой воды на входе в него на всех режимах эксплуатации. В противном случае теплообменный аппарат получится бесконечно больших размеров.

Это означает что если у вас температурный график работы источника тепла составляет 130/70°C, а расчётный температурный график системы отопления 90/70°C, то либо следует принять более высокую температуру греющей воды на выходе из теплообменника, например 130/80°C, либо принять более низкий температурный график для системы отопления например 80/60°C. Повышение температуры в обратном трубопроводе источника тепла при независимом подключении системы отопления на 5-10°C разрешается строительными нормами (ДБН).

2 Не задавайте допустимые потери давления в теплообменнике ниже 10кПа (1м.вод.ст), если это не принципиальное условие. Чем меньше вы задали допустимые потери давления, тем большим будет теплообменный аппарат и соответственно большей его цена.

Тепловой расчет теплообменника заключается в определении площади теплопередающей поверхности теплообменника по формуле:

т.е. в предварительном определении величин Q, K, t cp . Для этих расчетов необходимо определить физические параметры теплоносителей. Для воды физическими параметрами будут: теплоемкость, коэффициент теплопроводности, плотность, коэффициент вязкости; для пара – удельная теплота парообразования. Для определения физических параметров часто используют метод интерполяции.

Тепловую нагрузку аппарата и расход горячего теплоносителя определяем из уравнения теплового баланса при нагреве холодного теплоносителя при конденсации водяного насыщенного пара:
Q пр = D × r;
Q расх = 1,05 × G × с(t 2 - t 1)
где D – расход греющего пара, кг/с; r – теплота парообразования (конденсации), Дж/кг; 1,05 – коэффициент учитывающий потери тепла в размере 5%; G = V × r – массовый расход воды, кг/с; V – объемный расход воды, м 3 /с; r – плотность воды, кг/м 3 ; t 1 , t 2 – начальная и конечная температура воды, 0 С; с – средняя удельная теплоемкость воды, Дж/(кг×К).

Среднюю разность температур, будем определять так же, как при противотоке, а затем вводить поправку в виде коэффициента e, т.е. Δt ср = e × Δt против. В случае конденсации пара на трубах расчет будет одинаков как для прямотока, так и для противотока, а значение коэффициента e можно принять равным 1. Для определения Δt ср находим Δt max , Δt min , их отношение и Δt ср по среднеарифметической или по среднелогарифмической формулам.

В отдельных материалах Вы найдете:

Если сравнить эти простейшие тепловые расчеты двух теплообменных аппаратов различных типов, но одинаковой тепловой производительности, то становится очевидно, что коэффициент теплопередачи за счет более значительной турбулизации потоков у пластинчатого теплообменника практически в несколько раз выше нежели у теплообменника кожухотрубного. Площадь теплообмена, необходимая для придания теплоносителям заданных параметров тоже в разы ниже у теплообменника пластинчатого типа. При этом конструктивные размеры у полученного кожухотрубного теплообменника существенно превосходят габариты пластинчатого теплообменника, что, опять же, свидетельствует не в пользу теплообменников кожухотрубных.

Специалисты компании Астера всегда помогут осуществить бесплатный расчет пластинчатого теплообменника и подскажут стоимость его заказа. Избавив Вас при этом от лишних хлопот с расчетами. Обратиться к ним за помощью можно воспользовавшись специальным сервисом для .

Теплообменником называется аппарат, предназначенный для сообщения теплоты одному из теплоносителей в результате от-вода его от другого теплоносителя. Процесс подвода и отвода теплоты в теплообменнике может преследовать различные техно-логические цели: нагревание (охлаждение) жидкости или газа, превращение жидкости в пар, конденсацию пара и т. д.

По принципу действия теплообменники делят на рекуператив-ные, регенеративные и смесительные.

Рекуперативными назы-вают теплообменники, у которых передача теплоты от одного теплоносителя к другому осуществляется через разделяющую их твердую стенку. В автомобильных ДВС используют в основном рекуперативные теплообменники, которые применяют для охлаждения моторного масла, жидкости системы охлаждения, воздуха, поступающего в цилиндры двигателя, и других целей. На рис.14 приведена схема водомасляного теплообменника, которая часто реализуется при проектировании охладителей масла для смазочных систем дизелей.

Рис. 14. Схема простейшего кожухотрубного рекуперативного теплообменника для передачи теплоты от одного теплоносителя (I) к другому (II).

Регенеративными называют теплообменники, у которых горячий теплоноситель соприкасается с твердым телом (керамической или металлической насадкой) и отдает ему теп-лоту,в последующий период с твердым телом соприкасается «холодный» теплоноситель, который и воспринимает теплоту, аккумулированную телом.

В металлургической промышленности регенеративные тепло-обменники с давних пор применяют для подогрева воздуха и горючих газов. Аккумулирующую насадку в теплообменнике делают из красного кирпича. Особенностью регенераторов яв-ляется то, что процесс теплопередачи в них является нестационарным. По-этому технические расчеты регенеративных теплообменников вы-полняют по усредненным температурам во времени.

Смеситель-ными называются теплообменники, у которых передача теплоты от одного теплоносителя к другому осуществляется их непосред-ственным соприкосновением, следовательно, сопровождается пол-ным или частичным обменом вещества. Такие аппараты применяют для охлаждения и нагревания газов с помощью воды или для охлаждения воды воздухом в газовом производстве, при кондиционировании воздуха, при конденсации пара и т. д.

Несмотря на большое разнообразие теплообменных аппаратов, основные положения для их расчета остаются общими.

При расчете теплообменников обычно встречаются два случая:

1) конструктивный расчет, когда известны параметры теплоносителей на входе и выходе и расходы теплоносителей (или расход теплоты). Выбрав предварительно конструкцию теплообменник, расчетом, определяют поверхность теплообмена;


2) проверочный расчет, когда известны поверхность теплообмена и конструкция аппарата и частично известны параметры их на входе. Расчетом находят неизвестные параметры (например, параметры на выходе), расходы теплоносителей или другие характеристики аппарата (например, КПД).

В обоих случаях основными расчетными уравнениями служат: уравнение теплового баланса:

Q = m 1 с 1 (t" 1 - t"" 1 ) = m 2 с 2 (t" 2 - t"" 2 ) (40)

и уравнение теплопередачи:

Q = kF (t 1 - t 2 ).

В этих уравнениях и далее индекс 1 означает, что величины относятся к горячей жидкости, а индекс 2 — к холодной. Темпера-тура на входе обозначена одним штрихом, а на выходе — двумя; т — массовый расход жидкости; с — теплоемкость жидкости.

При выводе расчетных формул теплопередачи не учитывалось изменение температуры теплоносителей. В теплообменниках го-рячая среда охлаждается, а холодная нагревается, в связи с чем изменяется и температурный напор Δt. В таких условиях урав-нение теплопередачи можно применять лишь для элемента по-верхности dF, т. е.:

dQ = kΔtdF. (41)

Кроме того, необходимо учитывать зависимость коэффициента теплопередачи k от изменения температуры рабочих жидкостей. Большей частью такой учет сводится к отнесению коэффициента теплопередачи к средним температурам теплоносителей, иногда коэффициент теплопередачи находят по температурам теплоно-сителей в начале и в конце поверхности нагрева. Если получен-ные значения k" и k"" незначительно отличаются один от другого, то за среднее значение коэффициента теплопередачи берут среднеарифметическое значение: k = (k"+ k"" )/2.

При значительном раз-личии величин k" и k"" поверхность нагрева разделяют на отдель-ные участки, в пределах которых значения k меняются мало, и для каждого участка определяют коэффициент теплопередачи.

Общее количество теплоты, переданное через всю поверхность F , определяют интегрированием выражения (41):

где Δt m — среднелогарифмическое значение температурного напора по поверхности:

Если температура теп-лоносителей вдоль поверх-ности нагрева изменяется незначительно, то при расчете можно использовать среднеарифметический напор:

Δt m = Δt ср.ариф. = 0,5(t"+ t"" )

Среднеарифметический напор Δt ср.ариф всегда больше средне-логарифмического Δt m , но при Δt"/Δ t"" > 0,5 они отличаются один от другого меньше, чем на 3%.

В тепловых расчетах большое зна-чение имеет понятие так называемого водяного эквивалента теплоносителя W, которое определяет собой количество воды, экви-валентное по теплоемкости секундному расходу рассматриваемой жидкости, т. е.

W = mc p . (44)

С учетом водяного эквивалента уравнение (40) теплового баланса преобразуется к виду:

Таким образом, отношение изменения температуры теплоносителей обратно пропорционально отношению их водяных эквивалентов.

Характер изменения температур теплоносителей вдоль поверх-ности нагрева зависит от схемы их движения и соотношения ве-личин водяных эквивалентов. Если в теплообменнике горячая и холодные жидкости проте-кают параллельно и в одном направлении, то такая схема дви-жения называется прямоточной (рис. 15, а ).

Рис.15. Схемы движения рабочих жидкостей в теплообменниках.

При противотоке жидкости движутся параллельно, но в противоположные стороны (рис. 15, б ). В схеме перекрестного тока жидкости движутся в перекрещивающихся направлениях (рис. 15, в). Кроме перечис-ленных простых схем движения жидкостей, могут быть сложные, сочетающие в себе различные комбинации элементов простых схем (рис. 15, г и д).

На рис. 16, где по оси абсцисс отложена величина поверх-ности нагрева F , а по оси ординат температура, показаны четыре характернее пары кривых изменения температуры вдоль поверх-ности нагрева в зависимости от схемы течения (прямоток, про-тивоток) и величин водяных эквивалентов теплоносителей W 1 и W 2 .

Как видно из графиков, большее изменение температуры Δt" = t" - t" имеет жидкость, у которой водяной эквивалент меньше, что соответствует уравнению (45).

Рис. 16. Характер изменения температур теплоносителей при схемах прямотока и противотока.

Из рассмотрения графиков можно сделать следующие выводы:

1. Для прямотока конечная температура холодной жидкости всегда ниже конечной температуры горячей жидкости;

2. Температурный напор вдоль поверхности при прямотоке изменяется значительнее, и среднее его значение меньше, чем при противотоке, поэтому, как следует из формулы (42), при прямотоке передается меньшее количество теплоты, чем при противотоке.

3. Схемы прямотока и противотока можно считать равноцен-ными, если температура хотя бы одного из теплоносителей постоянна. Так получается при кипении жидкостей и при конденсации паров, или когда величина водяного эквивалента одного из теплоносителей настолько велика, что его температура изменяется незначительно.

4. При противотоке конечная температура холодной жидко-сти t"" 2 может быть выше конечной температуры горячей, т. е. при одной и той же начальной температуре холодной жидкости при противотоке ее можно нагреть до более высокой температуры.

Таким образом, с теплотехнической точки зрения всегда сле-дует отдавать предпочтение противотоку, если какие-либо другие причины (например, конструктивные) не заставляют применять схему прямотока.

Пожалуй, единственным недостатком схемы противотока яв-ляются более тяжелые температурные условия для материала стенок теплообменника, так как отдельные участки со стороны входа горячей жидкости омываются с обеих сторон жидкостями с максимальной температурой.

Как указывалось выше, при проверочном расчете необходимо рассчитать конечные температуры теплоносителей t"" 1 и t"" 2 и коли-чество переданной теплоты. В этом случае для приближенной оценки можно пользоваться зависимостями:

эффективность теплообменного аппарата

Эффективность процесса в теплообменнике оценивает коэф-фициентом полезного действия η , характеризующим долю теплоты горячей жидкости, использованную для подогрева хо-лодной жидкости:

где Q 1 - количество теплоты, воспринятой холодной жид-костью;

Q pacn . - располагаемое количество теплоты горячей жид-кости.

Для теплообменников автотранспортных средств важное значение имеют весовые и габаритные характеристики аппаратов. Компактность конструкции теплообменника можно оценить удельной поверхностью нагрева β , которая представляет собой площадь рабочей поверхности, приходящуюся на единицу объема аппарата: β уд = F раб. /V охл . .

Эффективность теплообменника зависит от конструктивной структуры поверхности охлаждения, которая оценивается коэффициентом оребрения ξ ор. = F охл /F жид , где F охл - площадь поверхности, охлаждаемая воздухом; F жид - площадь поверхности охлаждения, омываемая водой.

При выборе вида теплоносителя должны быть учтены его теплофизические свойства, стоимость, возможность коррозии стенок и т. п. Например, при выборе тосола или воды следует иметь в виду, что при удобстве применения тосола (низкая температура замерзания), он обладает более низкими теплофизическими свойствами, чем вода, что снижает эффективность теплообменного аппарата (радиатора).

Для повышения компактности и снижения веса теплообменных аппаратов используются различные средства интенсификации теп-лообмена.

Эффективным средством повышения компактности теплообменного аппарата является постановка ребер на его поверхностях, ко-торая может использоваться как в пластинчатых, так и в трубчатых теплообменных аппаратах. На рис. 17, а изображен пластинчатый теплообменник с плоскими непрерывными ребрами, а на рис. 17, б — теплообменник с ребристыми трубами овального сечения.

Ребра обычно выполняются из медных или алюминиевых тонких листов и надежно припаиваются к основной поверхности. Они могут быть гладкими или рифлеными. Ребра могут выполняться в виде отдельных пластинок, которые располагаются в канале пластинча-того теплообменника в шахматном или коридорном порядке.

Рис. 17. Фрагменты пластинчатого теплообменника с плоскими непрерывными ребрами (а) и теплообменника с ребристыми овальными трубами (б).

В настоящее время для двигателей автомобилей наиболее широко используют трубчато-пластинчатые и трубчато-ленточные конструкции радиаторов (рис. 18).

Рис.18. Сердцевины охлаждающих решеток радиатора:

а - трубчато-пластинчатого; б - трубчато-ленточного.

При изготовлении охлаждающих решеток трубчато-пластинчатых радиаторов используются трубки (шовные или цельнотянутые, которые изготовляют из алюминиевого сплава, латунной меди Л-68 или Л-90 толщиной до 0,15 мм ) (рис. 19). Пластины opeбрения выполняются плоскими или волнистыми из того же материла, что и трубки. В трубчато-ленточных конструкциях ленту изготавливают из меди М-3 толщиной 0,05...0,1 мм .

В трубчато-пластинчатых радиаторах охлаждающие трубки могут располагаться по отношению к потоку охлаждающего воздуха в ряд, в шахматном порядке и в шахматном прядке под углом (рис.20).

Рис.19. Трубки радиаторов:

а - медные паяные; б - сварные из алюминиевого сплава.

Рис. 20. Элементы охлаждения решеток трубчато-пластинчатых радиаторов:

а - рядное расположение трубок; б - шахматное расположение; в - то же под углом к воздушному потоку; г - охлаждающая пластина с отогнутыми просечками.

В трубчато-ленточных радиаторах (рис.21) охлаждающие трубки практически не отличаются по своей конструкции от трубок, применяемых в трубчато-пластинчатых радиаторах, но располагаются они только в ряд. Для увеличения турбулизации воздушного потока на лентах выполняют либо фигурную выштамповку (рис. 21,б ), либо отогнутые просечки.

Компактность конструкции современных автомобильных теплообменников, оцениваемая величиной удельной поверхности нагрева β уд , соответствует 440…850 м 2 /м 3 . Коэффициент оребрения для этих теплообменников варьируется в пределе: ξ ор. = 5…11,5.

Рис. 21. Элементы трубчато-ленточного радиатора:

а - охлаждающая решетка радиатора; б - охлаждающая лента с фигурной выштамповкой; 1 - охлаждающая лента; 2 - жидкостная охлаждающая трубка.

Пример . В теплообменном аппарате жидкость с водяным эквивалентом W 1 = 116 вт/град охлаждается от t" 1 = 120°С до t"" 1 = 50°С водой при температуре t" 2 = 10°С, для которой W 2 = 584 вт/град . Определить потреб-ную поверхность нагрева при схемах прямотока и противотока, если коэф-фициент теплопередачи k :

0,6 м 2 ;

б) при противотоке .

Общие принципы устройства схем теплоснабжения

Система теплоснабжения представляет собой систему транспортировки тепловой энергии (в виде нагретой воды или пара) от источника тепловой энергии к ее потребителю.

Система теплоснабжения в основном состоит из трех частей: источник тепла, потребитель тепла, тепловая сеть - служащая для транспортировки тепла от источника к потребителю.

  1. Паровой котел на ТЭЦ или котельной.
  2. Сетевой теплообменник.
  3. Циркуляционный насос.
  4. Теплообменник системы горячего водоснабжения.
  5. Теплообменник системы отопления.

Роль элементов схемы:

  • котельный агрегат - источник тепла, передача теплоты сгорания топлива к теплоносителю;
  • насосное оборудование - создание циркуляции теплоносителя;
  • подающий трубопровод - подача нагретого теплоносителя от источника к потребителю;
  • обратный трубопровод - возврат охлажденного теплоносителя на источник от потребителя;
  • теплообменное оборудование - преобразование тепловой энергии.

Температурные графики

В нашей стране принято качественное регулирование отпуска теплоты потребителям. Т. е. не изменяя расход теплоносителя через теплопотребляющую систему, изменяется разность температур на входе и на выходе системы.

Это достигается изменением температуры в подающем трубопроводе в зависимости от температуры наружного воздуха. Чем ниже температура наружного воздуха, тем выше температура в подающем трубопроводе. Соответственно температура обратного трубопровода также изменяется по этой зависимости. И все системы потребляющие тепло проектируются с учетом этих требований.

Графики зависимости температур теплоносителя в подающем и обратном трубопроводе называются температурным графиком системы теплоснабжения.

Температурный график устанавливается источником теплоснабжения в зависимости от его мощности, требований тепловых сетей, требований потребителей. Температурные графики называются по максимальным температурам в подающем и обратном трубопроводах: 150/70, 95/70 …

Срезка графика в верхней части - когда у котельной не хватает мощности.

Срезка графика в нижней части - для обеспечения работоспособности систем ГВС.

Работа систем отопления идет в основном по графику 95/70 для обеспечения средней температуры в отопительном приборе 82,5°С при -30° С.

Если требуемую температуру в подающем трубопроводе обеспечивает источник тепла, то требуемую температуру в обратном трубопроводе обеспечивает потребитель тепла своей теплопотребляющей системой. Если происходит завышение температуры обратной воды от потребителя, то это означает неудовлетворительную работу его системы и влечет за собой штрафы т. к. приводит к ухудшению работы источника тепла. При этом снижается его КПД. Поэтому существуют специальные контролирующие организации, которые отслеживают, чтобы теплопотребляющие системы потребителей выдавали температуру обратной воды по температурному графику или ниже. Однако в некоторых случаях подобное завышение допускается, напр. при установке отопительных теплообменников.

График 150/70 позволят передавать тепло от источника тепла с меньшими расходами теплоносителя, однако в домовые системы отопления нельзя подавать теплоноситель с температурой выше 105°С. Поэтому производят понижение графика, например на 95/70. Понижение производится установкой теплообменника либо подмесом обратной воды в подающий трубопровод.

Гидравлика тепловых сетей

Циркуляция воды в системах теплоснабжения производится сетевыми насосами на котельных и тепловых пунктах. Так как протяженность трасс достаточно велика то разность давления в подающем и обратном трубопроводах, которую создает насос, уменьшается с удалением от насоса.

Из рисунка видно, что для наиболее удаленного потребителя самый малый располагаемый перепад давления. Т. е. для нормальной работы его теплопотребляющих систем необходимо чтобы они имели самое малое гидравлическое сопротивление для обеспечения требуемого расхода воды через них.

Расчет пластинчатых теплообменников для систем отопления

Приготовление отопительной воды может происходить путем нагрева в теплообменнике.

При расчете пластинчатого теплообменника для получения отопительной воды , исходные данные берутся для самого холодного периода, т. е. когда необходимы самые высокие температуры и соответственно самое большое теплопотребление. Это наихудший режим для теплообменника, рассчитанного на отопление.

Особенностью расчета теплообменника для системы отопления является завышенная температура обратной воды по греющей стороне. Это допускается специально т. к. любой поверхностный теплообменник принципиально не может охладить обратную воду до температуры графика, если по нагреваемой стороне на вход в теплообменник поступает вода с температурой графика. Обычно допускается разница 5-15°С.

Расчет пластинчатых теплообменников для систем ГВС

При расчете пластинчатых теплообменников для систем горячего водоснабжения исходные данные берутся для переходного периода, т. е. когда температура подающего теплоносителя низка (обычно 70°С), холодная вода имеет самую низкую температуру (2-5°С) и при этом еще работает система отопления - это май-сентябрь месяцы. Это наихудший режим для теплообменника ГВС.

Расчетная нагрузка для систем ГВС определяется исходя из наличия на объекте, где устанавливаются теплообменники аккумуляторных баков.

При отсутствии баков расчет пластинчатых теплообменников производится на максимальную нагрузку. Т. е. теплообменники должны обеспечивать нагрев воды и при максимальном водоразборе.

При наличии аккумуляторных баков пластинчатые теплообменники рассчитываются на среднечасовую нагрузку. Аккумуляторные баки пополняются постоянно и компенсируют пиковый водоразбор. Теплообменники должны обеспечивать только подпитку баков.

Соотношение максимальной и среднечасовой нагрузок достигает в некоторых случаях 4-5 раз.

Обращаем Ваше внимание, что расчет пластинчатых теплообменников удобно производить в собственной

Теплообменный аппарат - это устройство, обеспечивающее передачу тепла между средами, разнящимися по температуре. Для обеспечения тепловых потоков различного количества конструируются разные теплообменные устройства. Они могут иметь разные формы и размеры в зависимости от требуемой производительности, но основным критерием выбора агрегата является площадь его рабочей поверхности. Она определяется с помощью теплового расчета теплообменника при его создании или эксплуатации.

Расчет может нести в себе проектный (конструкторский) или проверочный характер.

Конечным результатом конструкторского расчета является определение площади поверхности теплообмена, необходимой для обеспечения заданных тепловых потоков.

Проверочный расчет, напротив, служит для установления конечных температур рабочих теплоносителей, то есть тепловых потоков при имеющейся площади поверхности теплообмена.

Соответственно, при создании устройства проводится конструкторский расчет, а при эксплуатации - проверочный. Оба расчета идентичны и, по сути, являются взаимообратными.

Основы теплового расчета теплообменных аппаратов

Основой для расчета теплообменников являются уравнения теплопередачи и теплового баланса.

Имеет следующий вид:

Q = F‧k‧Δt, где:

  • Q - размер теплового потока, Вт;
  • F - площадь рабочей поверхности, м2;
  • k - коэффициент передачи тепла;
  • Δt - разница между температурами носителей на выходе в аппарат и на выходе из него. Также величина называется температурным напором .

Как можно заметить, величина F, являющаяся целью расчета, определяется именно через уравнение теплопередачи. Выведем формулу определения F:

Уравнение теплового баланса учитывает конструкцию самого аппарата. Рассматривая его можно определить значения t1 и t2 для дальнейшего вычисления F. Уравнение выглядит следующим образом:

Q = G 1 c p 1 (t 1 вх -t 1 вых) = G 2 c p 2 (t 2 вых -t 2 вх), где:

  • G 1 и G 2 - расходы масс греющего и нагреваемого носителей соответственно, кг/ч;
  • c p 1 и c p 2 - удельные теплоемкости (принимаются по нормативным данным), кДж/кг‧ ºС.

В процессе обмена тепловой энергией носители изменяют свои температуры, то есть в устройство каждый из них входит с одной температурой, а выходит - с другой. Эти величины (t 1 вх;t 1 вых и t 2 вх;t 2 вых) являются результатом проверочного расчета, с которым сравниваются фактические температурные показатели теплоносителей.

Вместе с тем большое значение имеют коэффициенты теплоотдачи несущих сред, а также особенности конструкции агрегата. При детальных конструкторских расчетах составляются схемы теплообменных аппаратов, отдельным элементом которых являются схемы движения теплоносителей. Сложность расчета зависит от изменения коэффициентов теплопередачи k на рабочей поверхности.

Для учета этих изменений уравнение теплопередачи принимает дифференциальный вид:

Такие данные, как коэффициенты теплоотдачи носителей, а также типовые размеры элементов при конструировании аппарата или при проверочном расчете, учитываются в соответствующих нормативных документах (ГОСТ 27590).

Пример расчета

Для большей наглядности представим пример конструкторского расчета теплообмена. Этот расчет имеет упрощенный вид, и не учитывает потерь теплоты и особенностей конструкции теплообменного аппарата.

Исходные данные:

  • Температура греющего носителя при входе t 1 вх = 14 ºС;
  • Температура греющего носителя при выходе t 1 вых = 9 ºС;
  • Температура нагреваемого носителя при входе t 2 вх = 8 ºС;
  • Температура нагреваемого носителя при выходе t 2 вых = 12 ºС;
  • Расход массы греющего носителя G 1 = 14000 кг/ч;
  • Расход массы нагреваемого носителя G 2 = 17500 кг/ч;
  • Нормативное значение удельной теплоемкости с р =4,2 кДж/кг‧ ºС;
  • Коэффициент теплопередачи k = 6,3 кВт/м 2 .

1) Определим производительность теплообменного аппарата с помощью уравнения теплового баланса:

Q вх = 14000‧4,2‧(14 - 9) = 294000 кДж/ч

Q вых = 17500‧4,2‧(12 - 8) = 294000 кДж/ч

Qвх = Qвых. Условия теплового баланса выполняются. Переведем полученную величину в единицу измерения Вт. При условии, что 1 Вт = 3,6 кДж/ч, Q = Qвх = Qвых = 294000/3,6 = 81666,7 Вт = 81,7 кВт.

2) Определим значение напора t. Он определяется по формуле:

3) Определим площадь поверхности теплообмена с помощью уравнения теплопередачи:

F = 81,7/6,3‧1,4 = 9,26 м2.

Как правило, при проведении расчета не все идет гладко, ведь необходимо учитывать всевозможные внешние и внутренние факторы, влияющие на процесс обмена теплом:

  • особенности конструкции и работы аппарата;
  • потери энергии при работе устройства;
  • коэффициенты теплоотдачи тепловых носителей;
  • различия в работе на разных участках поверхности (дифференциальный характер) и т.д.

Для наиболее точного и достоверного расчета инженер должен понимать сущность процесса передачи тепла от одного тела к другому. Также он должен быть максимально обеспечен необходимой нормативной и научной литературой, поскольку в расчете на множество величин составлены соответствующие нормы, которых специалист обязан придерживаться.

Выводы

Что мы получаем в результате расчета и в чем его конкретное применение?

Допустим, что на предприятие поступил заказ. Необходимо изготовить тепловой аппарат с заданной поверхностью теплообмена и производительностью. То есть перед предприятием не стоит вопрос размеров аппарата, но стоит вопрос материалов, которые обеспечат нужную производительность с заданной рабочей площадью.

Для решения данного вопроса производится тепловой расчет, то есть определяются температуры теплоносителей на входе и выходе из аппарата. Исходя из этих данных выбираются материалы для изготовления элементов устройства.

В конечном итоге, можно сказать, что рабочая площадь и температура носителей на входе и выходе из аппарата - основные взаимосвязанные показатели качества работы теплообменной машины. Определив их путем теплового расчета инженер сможет разработать основные решения для конструирования, ремонта, контроля и поддержания работы теплообменников.

В следующей статье мы рассмотрим назначение и особенности , поэтому подписывайтесь на нашу e-mail рассылку и новости в соц сетях, чтобы не пропустить анонс.

Похожие публикации