Экспертное сообщество по ремонту ванных комнат

Приобретенный иммунитет растений. Создание Н.И

ОСНОВЫ ИММУНИТЕТА РАСТЕНИЙ К БОЛЕЗНИ

При самой суровой эпифитотии растения поражаются болезнью неодинаково, что связано с устойчивостью и иммунитетом растений. Под иммунитетом понимается абсолютная непоражаемость при наличии инфекции в условиях, благоприятных для заражения растений и развития болезней. Устойчивость - это свойство организма противостоять сильному поражению болезнями. Эти два свойства зачастую отождествляют, имея в виду слабое поражение растений болезнями.

Устойчивость и иммунитет - сложные динамичные состояния, которые зависят от особенностей растения, возбудителя болезни и условий внешней среды. Изучение причин и закономерностей устойчивости очень актуально, так как только в этом случае возможна успешная работа по выведению устойчивых сортов.

Иммунитет бывает врожденным (наследственным) и приобретенным. Врожденный иммунитет передается от родителей потомству. Он изменяется только с изменением генотипа растения.

Приобретенный иммунитет формируется в процессе онтогенеза, что достаточно часто встречается в медицинской практике. У растений такого четко выраженного приобретенного свойства нет, но существуют приемы, позволяющие повысить устойчивость растений к болезням. Они активно изучаются.

Пассивная устойчивость определяется конституциональными особенностями растения, независимо от действия патогена. Нанример, толщина кутикулы некоторых органов растений является фактором пассивного иммунитета. Факторы активного иммунитета действуют только при контакте растения и возбудителя, т.е. возникают (индуцируются) в период патологического процесса.

Выделяют понятие специфического и неспецифического иммунитета. Неспецифический - это неспособность некоторых возбудителей вызвать заражение определенного вида растений. Например, свекла не поражается возбудителями головневых заболеваний зерновых культур, фитофторозом картофеля, картофель не поражается церкоспоро-зом свеклы, зерновые - макроспориозом картофеля и т. д. Иммунитет, проявляющийся на уровне сорта по отношению к специализированным возбудителям, называется специфическим.

Факторы устойчивости растений к болезням

Установлено, что устойчивость определяется суммарным действием защитных факторов на всех этапах патологического процесса. Все многообразие защитных факторов подразделяется на 2 группы: препятствующие внедрению патогена в растение (аксения); препятствующие распространению патогена в тканях растений (истинная устойчивость).

В первую группу входят факторы или механизмы морфологического, анатомического и физиологического характера.

Анатомо-морфологические факторы. Преградой для внедрения возбудителей может служить толщина покровных тканей, строение устьиц, опушенность листьев, восковой налет, особенности строения органов растений. Толщина покровных тканей является защитным фактором в отношении тех возбудителей, которые проникают в растения непосредственно через эти ткани. Это в первую очередь мучнисто-росяные грибы и некоторые представители класса Оомицеты. Строение устьиц имеет значение для внедрения в ткань бактерий, возбудителей ложных мучнистых рос, ржавчин и др. Обычно через плотно прикрывающиеся устьица возбудителю внедриться труднее. Опушенность листьев защищает растения от вирусных болезней, насекомых, передающих вирусную инфекцию. Благодаря восковому налету на листьях, плодах и стеблях капли на них не задерживаются, что препятствует прорастанию грибных патогенов.

Габитус растений и форма листьев также являются факторами, препятствующими начальным стадиям заражения. Так, сорта картофеля с рыхлым строением куста меньше поражаются фитофторозом, так как лучше проветриваются и инфекционные капли на листьях высыхают быстрее. На узкие листовые пластинки оседает меньше спор.

Роль строения органов растений можно проиллюстрировать на примере цветков ржи и пшеницы. Рожь очень сильно поражается спорыньей, в то время как пшеница - очень редко. Это объясняется тем, что у цветков пшеницы цветковые чешуи не раскрываются и споры возбудителя практически не проникают в них. Открытый тип цветения у ржи не препятствует попаданию спор.

Физиологические факторы. Быстрому внедрению возбудителей может препятствовать высокое осмотическое давление в клетках растений, скорость физиологических процессов, приводящих к затягиванию ран (образование раневой перидермы), через которые проникают многие патогены. Важна также скорость прохождения отдельных фаз онтогенеза. Так, возбудитель твердой головни пшеницы внедряется только в молодые проростки, поэтому сорта, дружно и быстро прорастающие, поражаются меньше.

Ингибиторы. Это соединения, содержащиеся в растительных тканях или синтезированные в ответ на заражение, которые подавляют развитие патогенов. К ним относятся фитонциды - вещества различной химической природы, являющиеся факторами врожденного пассивного иммунитета. В большом количестве фитонциды вырабатываются тканями лука, чеснока, черемухи, эвкалипта, лимона и др.

Алкалоиды - азотсодержащие органические основания, образующиеся в растениях. Особенно богаты ими растения семейства бобовых, маковых, пасленовых, астровых и др. Например, соланин картофеля и томатин помидоров токсичны для многих возбудителей. Так, развитие грибов рода Fusarium тормозится соланином в разведении 1:105. Подавлять развитие возбудителей могут фенолы, эфирные масла и ряд других соединений. Все перечисленные группы ингибиторов всегда присутствуют в интактных (неповрежденных тканях).

Индуцированные вещества, которые синтезируются растением в процессе развития патогена, называют фитоалексинами. По химическому составу все они - низкомолекулярные вещества, многие из них

имеют фенольную природу. Установлено, что сверхчувствительная реакция растения на заражение зависит от скорости индукции фитоалексинов. Известны и идентифицированы многие фитоалексины. Так, из растений картофеля, зараженных возбудителем фитофтороза, выделены ришитин, любимин, фитуберин, из гороха - пизатин, из моркови - изокумарин. Образование фитоалексинов представляет типичный пример активного иммунитета.

К активному иммунитету относится также активизация ферментных систем растения, в частности окислительных (пероксидаза, поли-фенолоксидаза). Это свойство позволяет инактивировать гидролитические ферменты возбудителя болезни и обезвреживать им токсины.

Приобретенный, или индуцированный, иммунитет. Для повышения устойчивости растений к инфекционным болезням применяется биологическая и химическая иммунизация растений.

Биологическая иммунизация достигается обработкой растений ослабленными культурами патогенов или продуктами их жизнедеятельности (вакцинация). Ее применяют при защите растений от некоторых вирусных болезней, а также бактериальных и грибных патогенов.

Химическая иммунизация основана на действии некоторых химических веществ, в том числе и пестицидов. Ассимилируясь в растениях, они изменяют обмен веществ в направлении, неблагоприятном для возбудителей болезней. Примером таких химических иммунизаторов служат фенольные соединения: гидрохинон, пирогаллол, ортонитрофенол, паранитрофенол, которыми обрабатывают семена или молодые растения. Иммунизирующим свойством обладает ряд фунгицидов системного действия. Так, дихлорциклопропан защищает рис от пирикуляриоза благодаря усилению синтеза фенолов и образованию лигнина.

Известна иммунизирующая роль и некоторых микроэлементов, входящих в состав ферментов растений. Кроме того, микроэлементы улучшают поступление основных элементов питания, что благоприятно сказывается на устойчивости растений к болезням.

Генетика устойчивости и патогенности. Типы устойчивости

Устойчивость растений и патогенность микроорганизмов, как и все другие свойства живых организмов, контролируются генами, одним или несколькими, качественно отличающимися друг от друга. Наличие таких генов обусловливает абсолютный иммунитет к определенным расам патогена. Возбудители болезни, в свою очередь, имеют ген (или гены) вирулентности, позволяющий ему преодолевать защитное действие генов устойчивости. По теории X. Флора, на каждый ген устойчивости растения может выработаться соответствующий ген вирулентности. Это явление называют комплементарностью. При воздействии патогена, обладающего комплементарным геном вирулентности, растение становится восприимчивым. Если гены устойчивости и вирулентности некомплементарны, клетки растения локализуют возбудитель в результате сверхчувствительной реакции на него.

Например (табл. 4), согласно этой теории, сорта картофеля, имеющие ген устойчивости R, поражаются только расой 1 возбудителя P. infestans или более сложной, но обладающей обязательно геном вирулентности 1 (1,2; 1,3; 1,4; 1,2,3) и т. д. Сорта, не имеющие генов устойчивости (г), поражаются всеми без исключения расами, в том числе и расой без генов вирулентности (0).
Гены устойчивости чаще всего доминантны, поэтому их сравнительно легко передать потомству при селекции. Гены сверхчувствительности, или R-гены, определяют сверхчувствительный тип устойчивости, которую называют также олигогенной, моногенной, истинной, вертикальной. Она обеспечивает растению абсолютную непоражаемость при воздействии на него рас без комплементарных генов вирулентности. Однако с появлением в популяции более вирулентных рас патогена устойчивость теряется.

Другой тип устойчивости - полигенная, полевая, относительная, горизонтальная, которая зависит от совокупного действия множества генов. Полигенная устойчивость в различной степени присуща каждому растению. При высоком ее уровне патологический процесс замедляется, что дает возможность растению расти и развиваться, несмотря на пораженность болезнью. Как любой полигенный признак, подобная устойчивость может колебаться под воздействием условий выращивания (уровень и качество минерального питания, влагообеспеченность, длина дня и ряд других факторов).

Полигенный тип устойчивости наследуется трансгрессивно, поэтому закрепить его путем селекции сортов проблематично.

Распространенным является сочетание сверхчувствительной и по-лигенной устойчивости в одном сорте. В этом случае сорт будет иммунным до появления рас, способных преодолевать моногенную устойчивость, после чего защитные функции определяет полигенная устойчивость.

Методы создания устойчивых сортов

В практике наиболее широко используются направленная гибридизация и отбор.

Гибридизация. Передача генов устойчивости от род ительских растений потомству происходит при межсортовой, межвидовой и межродовой гибридизации. Для этого в качестве родительских форм подбирают растения с желаемыми хозяйственно-биологическими характеристиками и растения, обладающие устойчивостью. Донорами устойчивости чаще бывают дикие виды, поэтому в потомстве могут появиться нежелательные свойства, которые устраняются при возвратных скрещиваниях, или беккроссах. Бейер ос сы повторяют до тех пор, пока все признаки <<дикаря», кроме устойчивости, не поглотятся сортом.

С помощью межсортовой и межвидовой гибридизации создано много сортов зерновых, зернобобовых культур, картофеля, подсолнечника, льна и других культур, устойчивых к наиболее вредоносным и опасным болезням.

При нескрещиваемости некоторых видов друг с другом прибегают к методу «посредника», при котором каждый вид родительских форм или один из них скрещивают сначала с третьим видом, а затем полученные гибриды скрещивают между собой или с одним из первоначально планируемых видов.

В любом случае устойчивость гибридов проверяют на жестком инфекционном фоне (естественном или искусственном), т. е. при большом количестве инфекции возбудителя, в условиях, благоприятных для развития болезни. Для дальнейшего размножения отбирают растения, сочетающие высокую устойчивость и хозяйственно ценные признаки.

Отбор. Этот прием - обязательный этап при любой гибридизации, но он может быть и самостоятельным методом получения устойчивых сортов. Методом постепенного отбора в каждом поколении растений с нужными признаками (в том числе и с устойчивостью) получено много сортов сельскохозяйственных растений. Он особенно эффективен для перекрестноопыляющихся растений, так как потомство их представлено гетерозиготной популяцией.

С целью создания устойчивых к болезням сортов все более широко применяются искусственный мутагенез, генная инженерия и др.

Причины потери устойчивости

Со временем сорта, как правило, утрачивают устойчивость либо в результате изменения патогенных свойств возбудителей инфекционных болезней, либо нарушения иммунологических свойств растений в процессе их воспроизводства. У сортов со сверхчувствительным типом устойчивости она теряется с появлением более вирулентных рас или комплементарных генов. Сорта с моногенной устойчивостью поражаются из-за постепенного накопления новых рас патогена. Вот почему селекция сортов только со сверхчувствительным типом устойчивости является бесперспективной.

Причин, способствующих образованию новых рас, несколько. Первая и наиболее частая - мутации. Они обычно проходят спонтанно под действием различных мутагенных факторов и присущи фитопатогенным грибам, бактериям и вирусам, причем для последних мутации - единственный способ изменчивости. Вторая причина - гибридизация генетически разных особей микроорганизмов при половом процессе. Этот путь характерен главным образом для грибов. Третий путь - гетерокариоз, или разноядерность, гаплоидных клеток. У грибов разноядерность может возникать из-за мутаций отдельных ядер, перехода ядер из разнокачественных гиф по анастомозам (сросшимся участкам гиф) и перекомбинации генов при слиянии ядер и последующем их делении (парасексуальный процесс). Разноядерность и пар асексуальный процесс имеют особенное значение для представителей класса несовершенных грибов, у которых отсутствует половой процесс.

У бактерий, помимо мутаций, существует трансформация, при которой ДНК, выделенная одним штаммом бактерий, поглощается клетками другого штамма и включается в их геном. При трансдукции отдельные сегменты хромосомы из одной бактерии переносятся в другую с помощью бактериофага (вируса бактерии).

У микроорганизмов образование рас идет постоянно. Многие из них сразу же погибают, будучи неконкурентоспособными из-за более низкого уровня агрессивности или отсутствия других важных признаков. Закрепляются в популяции, как правило, более вирулентные расы при наличии сортов и видов растений с генами устойчивости к существующим расам. В таких случаях новая раса даже при слабой агрессивности, не встречая конкуренции, постепенно накапливается и распространяется.

Например, при возделывании картофеля с генотипами устойчивости R, R4 и R1R4 в популяции возбудителя фитофтороза будут преобладать расы 1; 4 и 1,4. При введении в производство сортов с генотипом R2 вместо R4 из популяции патогена постепенно исчезнет раса 4, а распространятся расы 2; 1,2; 1,2,4.

Иммунологические изменения сортов могут происходить и в связи с изменением условий их произрастания. Поэтому перед районированием сортов с полигенной устойчивостью в других эколого-географи-ческих зонах обязательно проводят их иммунологическое испытание в зоне будущего районирования.

ОСНОВЫ ИММУНИТЕТА РАСТЕНИЙ К БОЛЕЗНИ

При самой суровой эпифитотии растения поражаются болезнью неодинаково, что связано с устойчивостью и иммунитетом растений. Под иммунитетом понимается абсолютная непоражаемость при наличии инфекции в условиях, благоприятных для заражения растений и развития болезней. Устойчивость - это свойство организма противостоять сильному поражению болезнями. Эти два свойства зачастую отождествляют, имея в виду слабое поражение растений болезнями.

Устойчивость и иммунитет - сложные динамичные состояния, которые зависят от особенностей растения, возбудителя болезни и условий внешней среды. Изучение причин и закономерностей устойчивости очень актуально, так как только в этом случае возможна успешная работа по выведению устойчивых сортов.

Иммунитет бывает врожденным (наследственным) и приобретенным. Врожденный иммунитет передается от родителей потомству. Он изменяется только с изменением генотипа растения.

Приобретенный иммунитет формируется в процессе онтогенеза, что достаточно часто встречается в медицинской практике. У растений такого четко выраженного приобретенного свойства нет, но существуют приемы, позволяющие повысить устойчивость растений к болезням. Они активно изучаются.

Пассивная устойчивость определяется конституциональными особенностями растения, независимо от действия патогена. Нанример, толщина кутикулы некоторых органов растений является фактором пассивного иммунитета. Факторы активного иммунитета действуют только при контакте растения и возбудителя, т.е. возникают (индуцируются) в период патологического процесса.

Выделяют понятие специфического и неспецифического иммунитета. Неспецифический - это неспособность некоторых возбудителей вызвать заражение определенного вида растений. Например, свекла не поражается возбудителями головневых заболеваний зерновых культур, фитофторозом картофеля, картофель не поражается церкоспоро-зом свеклы, зерновые - макроспориозом картофеля и т. д. Иммунитет, проявляющийся на уровне сорта по отношению к специализированным возбудителям, называется специфическим.

Факторы устойчивости растений к болезням

Установлено, что устойчивость определяется суммарным действием защитных факторов на всех этапах патологического процесса. Все многообразие защитных факторов подразделяется на 2 группы: препятствующие внедрению патогена в растение (аксения); препятствующие распространению патогена в тканях растений (истинная устойчивость).

В первую группу входят факторы или механизмы морфологического, анатомического и физиологического характера.

Анатомо-морфологические факторы. Преградой для внедрения возбудителей может служить толщина покровных тканей, строение устьиц, опушенность листьев, восковой налет, особенности строения органов растений. Толщина покровных тканей является защитным фактором в отношении тех возбудителей, которые проникают в растения непосредственно через эти ткани. Это в первую очередь мучнисто-росяные грибы и некоторые представители класса Оомицеты. Строение устьиц имеет значение для внедрения в ткань бактерий, возбудителей ложных мучнистых рос, ржавчин и др. Обычно через плотно прикрывающиеся устьица возбудителю внедриться труднее. Опушенность листьев защищает растения от вирусных болезней, насекомых, передающих вирусную инфекцию. Благодаря восковому налету на листьях, плодах и стеблях капли на них не задерживаются, что препятствует прорастанию грибных патогенов.

Габитус растений и форма листьев также являются факторами, препятствующими начальным стадиям заражения. Так, сорта картофеля с рыхлым строением куста меньше поражаются фитофторозом, так как лучше проветриваются и инфекционные капли на листьях высыхают быстрее. На узкие листовые пластинки оседает меньше спор.

Роль строения органов растений можно проиллюстрировать на примере цветков ржи и пшеницы. Рожь очень сильно поражается спорыньей, в то время как пшеница - очень редко. Это объясняется тем, что у цветков пшеницы цветковые чешуи не раскрываются и споры возбудителя практически не проникают в них. Открытый тип цветения у ржи не препятствует попаданию спор.

Физиологические факторы. Быстрому внедрению возбудителей может препятствовать высокое осмотическое давление в клетках растений, скорость физиологических процессов, приводящих к затягиванию ран (образование раневой перидермы), через которые проникают многие патогены. Важна также скорость прохождения отдельных фаз онтогенеза. Так, возбудитель твердой головни пшеницы внедряется только в молодые проростки, поэтому сорта, дружно и быстро прорастающие, поражаются меньше.

Ингибиторы. Это соединения, содержащиеся в растительных тканях или синтезированные в ответ на заражение, которые подавляют развитие патогенов. К ним относятся фитонциды - вещества различной химической природы, являющиеся факторами врожденного пассивного иммунитета. В большом количестве фитонциды вырабатываются тканями лука, чеснока, черемухи, эвкалипта, лимона и др.

Алкалоиды - азотсодержащие органические основания, образующиеся в растениях. Особенно богаты ими растения семейства бобовых, маковых, пасленовых, астровых и др. Например, соланин картофеля и томатин помидоров токсичны для многих возбудителей. Так, развитие грибов рода Fusarium тормозится соланином в разведении 1:105. Подавлять развитие возбудителей могут фенолы, эфирные масла и ряд других соединений. Все перечисленные группы ингибиторов всегда присутствуют в интактных (неповрежденных тканях).

Индуцированные вещества, которые синтезируются растением в процессе развития патогена, называют фитоалексинами. По химическому составу все они - низкомолекулярные вещества, многие из них

имеют фенольную природу. Установлено, что сверхчувствительная реакция растения на заражение зависит от скорости индукции фитоалексинов. Известны и идентифицированы многие фитоалексины. Так, из растений картофеля, зараженных возбудителем фитофтороза, выделены ришитин, любимин, фитуберин, из гороха - пизатин, из моркови - изокумарин. Образование фитоалексинов представляет типичный пример активного иммунитета.

К активному иммунитету относится также активизация ферментных систем растения, в частности окислительных (пероксидаза, поли-фенолоксидаза). Это свойство позволяет инактивировать гидролитические ферменты возбудителя болезни и обезвреживать им токсины.

Приобретенный, или индуцированный, иммунитет. Для повышения устойчивости растений к инфекционным болезням применяется биологическая и химическая иммунизация растений.

Биологическая иммунизация достигается обработкой растений ослабленными культурами патогенов или продуктами их жизнедеятельности (вакцинация). Ее применяют при защите растений от некоторых вирусных болезней, а также бактериальных и грибных патогенов.

Химическая иммунизация основана на действии некоторых химических веществ, в том числе и пестицидов. Ассимилируясь в растениях, они изменяют обмен веществ в направлении, неблагоприятном для возбудителей болезней. Примером таких химических иммунизаторов служат фенольные соединения: гидрохинон, пирогаллол, ортонитрофенол, паранитрофенол, которыми обрабатывают семена или молодые растения. Иммунизирующим свойством обладает ряд фунгицидов системного действия. Так, дихлорциклопропан защищает рис от пирикуляриоза благодаря усилению синтеза фенолов и образованию лигнина.

Известна иммунизирующая роль и некоторых микроэлементов, входящих в состав ферментов растений. Кроме того, микроэлементы улучшают поступление основных элементов питания, что благоприятно сказывается на устойчивости растений к болезням.

Генетика устойчивости и патогенности. Типы устойчивости

Устойчивость растений и патогенность микроорганизмов, как и все другие свойства живых организмов, контролируются генами, одним или несколькими, качественно отличающимися друг от друга. Наличие таких генов обусловливает абсолютный иммунитет к определенным расам патогена. Возбудители болезни, в свою очередь, имеют ген (или гены) вирулентности, позволяющий ему преодолевать защитное действие генов устойчивости. По теории X. Флора, на каждый ген устойчивости растения может выработаться соответствующий ген вирулентности. Это явление называют комплементарностью. При воздействии патогена, обладающего комплементарным геном вирулентности, растение становится восприимчивым. Если гены устойчивости и вирулентности некомплементарны, клетки растения локализуют возбудитель в результате сверхчувствительной реакции на него.

Например (табл. 4), согласно этой теории, сорта картофеля, имеющие ген устойчивости R, поражаются только расой 1 возбудителя P. infestans или более сложной, но обладающей обязательно геном вирулентности 1 (1,2; 1,3; 1,4; 1,2,3) и т. д. Сорта, не имеющие генов устойчивости (г), поражаются всеми без исключения расами, в том числе и расой без генов вирулентности (0).
Гены устойчивости чаще всего доминантны, поэтому их сравнительно легко передать потомству при селекции. Гены сверхчувствительности, или R-гены, определяют сверхчувствительный тип устойчивости, которую называют также олигогенной, моногенной, истинной, вертикальной. Она обеспечивает растению абсолютную непоражаемость при воздействии на него рас без комплементарных генов вирулентности. Однако с появлением в популяции более вирулентных рас патогена устойчивость теряется.

Другой тип устойчивости - полигенная, полевая, относительная, горизонтальная, которая зависит от совокупного действия множества генов. Полигенная устойчивость в различной степени присуща каждому растению. При высоком ее уровне патологический процесс замедляется, что дает возможность растению расти и развиваться, несмотря на пораженность болезнью. Как любой полигенный признак, подобная устойчивость может колебаться под воздействием условий выращивания (уровень и качество минерального питания, влагообеспеченность, длина дня и ряд других факторов).

Полигенный тип устойчивости наследуется трансгрессивно, поэтому закрепить его путем селекции сортов проблематично.

Распространенным является сочетание сверхчувствительной и по-лигенной устойчивости в одном сорте. В этом случае сорт будет иммунным до появления рас, способных преодолевать моногенную устойчивость, после чего защитные функции определяет полигенная устойчивость.

Методы создания устойчивых сортов

В практике наиболее широко используются направленная гибридизация и отбор.

Гибридизация. Передача генов устойчивости от род ительских растений потомству происходит при межсортовой, межвидовой и межродовой гибридизации. Для этого в качестве родительских форм подбирают растения с желаемыми хозяйственно-биологическими характеристиками и растения, обладающие устойчивостью. Донорами устойчивости чаще бывают дикие виды, поэтому в потомстве могут появиться нежелательные свойства, которые устраняются при возвратных скрещиваниях, или беккроссах. Бейер ос сы повторяют до тех пор, пока все признаки <<дикаря», кроме устойчивости, не поглотятся сортом.

С помощью межсортовой и межвидовой гибридизации создано много сортов зерновых, зернобобовых культур, картофеля, подсолнечника, льна и других культур, устойчивых к наиболее вредоносным и опасным болезням.

При нескрещиваемости некоторых видов друг с другом прибегают к методу «посредника», при котором каждый вид родительских форм или один из них скрещивают сначала с третьим видом, а затем полученные гибриды скрещивают между собой или с одним из первоначально планируемых видов.

В любом случае устойчивость гибридов проверяют на жестком инфекционном фоне (естественном или искусственном), т. е. при большом количестве инфекции возбудителя, в условиях, благоприятных для развития болезни. Для дальнейшего размножения отбирают растения, сочетающие высокую устойчивость и хозяйственно ценные признаки.

Отбор. Этот прием - обязательный этап при любой гибридизации, но он может быть и самостоятельным методом получения устойчивых сортов. Методом постепенного отбора в каждом поколении растений с нужными признаками (в том числе и с устойчивостью) получено много сортов сельскохозяйственных растений. Он особенно эффективен для перекрестноопыляющихся растений, так как потомство их представлено гетерозиготной популяцией.

С целью создания устойчивых к болезням сортов все более широко применяются искусственный мутагенез, генная инженерия и др.

Причины потери устойчивости

Со временем сорта, как правило, утрачивают устойчивость либо в результате изменения патогенных свойств возбудителей инфекционных болезней, либо нарушения иммунологических свойств растений в процессе их воспроизводства. У сортов со сверхчувствительным типом устойчивости она теряется с появлением более вирулентных рас или комплементарных генов. Сорта с моногенной устойчивостью поражаются из-за постепенного накопления новых рас патогена. Вот почему селекция сортов только со сверхчувствительным типом устойчивости является бесперспективной.

Причин, способствующих образованию новых рас, несколько. Первая и наиболее частая - мутации. Они обычно проходят спонтанно под действием различных мутагенных факторов и присущи фитопатогенным грибам, бактериям и вирусам, причем для последних мутации - единственный способ изменчивости. Вторая причина - гибридизация генетически разных особей микроорганизмов при половом процессе. Этот путь характерен главным образом для грибов. Третий путь - гетерокариоз, или разноядерность, гаплоидных клеток. У грибов разноядерность может возникать из-за мутаций отдельных ядер, перехода ядер из разнокачественных гиф по анастомозам (сросшимся участкам гиф) и перекомбинации генов при слиянии ядер и последующем их делении (парасексуальный процесс). Разноядерность и пар асексуальный процесс имеют особенное значение для представителей класса несовершенных грибов, у которых отсутствует половой процесс.

У бактерий, помимо мутаций, существует трансформация, при которой ДНК, выделенная одним штаммом бактерий, поглощается клетками другого штамма и включается в их геном. При трансдукции отдельные сегменты хромосомы из одной бактерии переносятся в другую с помощью бактериофага (вируса бактерии).

У микроорганизмов образование рас идет постоянно. Многие из них сразу же погибают, будучи неконкурентоспособными из-за более низкого уровня агрессивности или отсутствия других важных признаков. Закрепляются в популяции, как правило, более вирулентные расы при наличии сортов и видов растений с генами устойчивости к существующим расам. В таких случаях новая раса даже при слабой агрессивности, не встречая конкуренции, постепенно накапливается и распространяется.

Например, при возделывании картофеля с генотипами устойчивости R, R4 и R1R4 в популяции возбудителя фитофтороза будут преобладать расы 1; 4 и 1,4. При введении в производство сортов с генотипом R2 вместо R4 из популяции патогена постепенно исчезнет раса 4, а распространятся расы 2; 1,2; 1,2,4.

Иммунологические изменения сортов могут происходить и в связи с изменением условий их произрастания. Поэтому перед районированием сортов с полигенной устойчивостью в других эколого-географи-ческих зонах обязательно проводят их иммунологическое испытание в зоне будущего районирования.

  • «

Учение об иммунитете растений

Основная статья: Иммунитет растений

Вавилов подразделял иммунитет растений на структурный (механический) и химический. Механический иммунитет растений обусловлен морфологическими особенностями растения-хозяина, в частности, наличием защитных приспособлений, которые препятствуют проникновению патогенов в тело растений. Химический иммунитет зависит от химических особенностей растений.

вавилов иммунитет растение селекция

Создание Н.И. Вавиловым современного учения о селекции

Планомерное изучение мировых растительных ресурсов важнейших культурных растений коренным образом изменило представление о сортовом и видовом составе даже таких хорошо изученных культур, как пшеница, рожь, кукуруза, хлопчатник, горох, лен и картофель. Среди видов и множества разновидностей этих культурных растений, привезенных из экспедиций, почти половина оказались новыми, еще не известными науке. Открытие новых видов и разновидностей картофеля совершенно изменило прежнее представление об исходном материале для его селекции. На материале, собранном экспедициями Н.И. Вавилова и его сотрудников, основывалась вся селекция хлопчатника, и было построено освоение влажных субтропиков в СССР.

На основе результатов подробного и длительного изучения сортовых богатств, собранных экспедициями, были составлены дифференциальные карты географической локализации разновидностей пшеницы, овса, ячменя, ржи, кукурузы, проса, льна, гороха, чечевицы, бобов, фасоли, нута, чины, картофеля и других растений. На этих картах можно было видеть, где концентрируется основное сортовое разнообразие названных растений, т.е. где надлежит черпать исходный материал для селекции данной культуры. Даже для таких древних растений, как пшеница, ячмень, кукуруза, хлопчатник, давно расселившихся по всему земному шару, удалось с большой точностью установить основные области первичного видового потенциала. Кроме того, было установлено совпадение ареалов первичного формообразования для многих видов и даже родов. Географическое изучение привело к установлению целых культурных самостоятельных флор, специфических для отдельных областей.

Ботанико-географическое изучение большого числа культурных растений привело к внутривидовой систематике культурных растений, в результате чего появились работы Н.И. Вавилова "Линнеевский вид как система" и "Учение о происхождении культурных растений после Дарвина".

Слово иммунитет происходит от латинского immunitas, что означает "освобождение от чего-либо".

Под иммунитетом понимают невосприимчивость организма к действию возбудителей болезней и продуктов их жизнедеятельности. Например, хвойные породы обладают иммунитетом против мучнистой росы, а лиственные - против шютте. Ель абсолютно невосприимчива к ржавчине побегов, а сосна - к ржавчине шишек. Ель и сосна иммунны к ложному трутовику и т.д.

И.И.Мечников под невосприимчивостью к инфекционным болезням понимал общую систему явлений, благодаря которым организм может противостоять нападению болезнетворных микробов. Способность растения противостоять болезни может выражаться или в форме иммунитета к заражению, или в виде какого-то механизма устойчивости, который ослабляет развитие заболевания.

Различная устойчивость к болезням ряда растений, особенно сельскохозяйственных, известна давно. Отбор сельскохозяйственных культур по устойчивости к болезням, наряду с отбором на качество и продуктивность ведется с древнейших времен. Но только в конце XIXвека появились первые работы об иммунитете, как учении об устойчивости растений к болезням. Среди многих теорий и гипотез того времени следует назвать фагоцитарную теориюИ.И.Мечникова . Согласно этой теории организм животного выделяет защитные вещества (фагоциты), которые убивают патогенные организмы. Это относится, главным образом к животным, но имеет место и в растениях.

Большую известность получила механическая теория австралийского ученого Кобба (1880-1890 гг.), который полагал, что причина устойчивости растений к заболеваниям сводится к анатомо-морфологическим различиям в строении устойчивых и восприимчивых форм и видов. Однако, как выяснилось в дальнейшем, этим нельзя объяснить все случаи устойчивости растений, а, следовательно, и признать эту теорию как всеобщую. Эта теория встретила критику со стороны Эриксона и Уорда.

В дальнейшем (1905г.) англичанин Масси выдвинул хемотропическую теорию , по которой болезнью не поражаются те растения, в которых отсутствуют химические вещества, имеющие привлекающее действие в отношении инфекционного начала (споры грибов, клетки бактерий и т.п.).

Однако в дальнейшем эта теория также была подвергнута критике Уордом, Гибсоном, Сальмоном и др., так как оказалось, что в ряде случаев инфекция уничтожается растением уже после ее проникновения в клетки и ткани растения.

После кислотной теории выдвигалось еще несколько гипотез. Из них заслуживает внимания гипотеза М.Уарда (1905). Согласно этой гипотезе, восприимчивость зависит от способности грибов преодолевать сопротивление растений при помощи энзимов и токсинов, а устойчивость обусловливается способностью растений разрушать эти энзимы и токсины.

Из других теоретических концепций наибольшего внимания заслуживает фитонцидная теория иммунитета , выдвинутая Б.П.Токиным в 1928 г. Это положение долгое время развивал Д.Д.Вердеревский, который установил, что в клеточном соке устойчивых растений независимо от нападения болезнетворных организмов находятся вещества - фитонциды, подавляющие рост патогенов.

И, наконец, представляет некоторый интерес теория иммуногенеза, предложенная М.С. Дуниным (1946), который рассматривает иммунитет в динамике, с учетом меняющегося состояния растений и внешних факторов. Все болезни по теории иммунногенеза он делит на три группы:

1. болезни, поражающие молодые растения или молодые ткани растений;

2. болезни, поражающие стареющие растения или ткани;

3. болезни, развитие которых не имеет четкой приуроченности к фазам развития растения-хозяина.

Много внимания иммунитету, главным образом сельскохозяйственных растений, уделял Н.И.Вавилов. К этому периоду относятся также работы зарубежных ученых И.Эриксона (Швеция), Э.Стэкмена (США).

Иммунитет растений - это их невосприимчивость к возбудителям заболеваний или неповреждаемость вредителями.

Он может быть выражен у растений по-разному - от слабой степени устойчивости до чрезвычайно высокой ее выраженности.

Иммунитет - результат эволюции сложившихся взаимодействий растений и их потребителей (консументов). Он представляет собой систему барьеров, ограничивающую заселение растений потребителями, отрицательно влияющую на процессы жизнедеятельности вредителей, а также систему свойств растений, обеспечивающую их выносливость к нарушениям целостности организма и проявляющуюся на разных уровнях организации растений.

Барьерные функции, обеспечивающие устойчивость как вегетативных, так и репродуктивных органов растений к воздействию вредных организмов, могут выполнять ростовые и органообразовательные, анатомо-морфологические, физиолого-биохимические и другие особенности растений.

Иммунитет растений к вредителям проявляется на различных таксономических уровнях растений (семейств, порядков, триб, родов и видов). Для относительно крупных таксономических группировок растений (семейств и выше) наиболее характерен абсолютный иммунитет (полная неповреждаемость растений данным видом вредителя). На уровне рода, вида и сорта проявляется преимущественно относительное значение иммунитета. Однако даже относительная устойчивость растений к вредителям, особенно проявляющаяся у сортов и гибридов сельскохозяйственных культур, имеет важное значение для подавления численности и снижения вредоносности фитофагов.

Главнейшей отличительной чертой иммунитета растений к вредителям (насекомым, клещам, нематодам) является высокая степень выраженности барьеров, ограничивающих избираемость растений для питания и откладки яиц. Это обусловлено тем, что большинство насекомых и других фитофагов ведет свободный (автономный) образ жизни и вступает в контакт с растением лишь на отдельных этапах своего онтогенеза.

Известно, что насекомые по разнообразию представленных в этом классе видов и жизненных форм не имеют себе равных. Они среди беспозвоночных животных достигли высочайшего уровня развития, в первую очередь благодаря совершенству своих органов чувств и передвижения. Это обеспечило насекомым процветание, основанное на широких возможностях использования высокого уровня активности и реактивности при завоевании одного из ведущих мест в круговороте веществ в биосфере и в экологических цепях питания.

Хорошо развитые ноги и крылья в сочетании с высокочувствительной сенсорной системой позволяют насекомым-фитофагам активно выбирать и заселять интересующие их кормовые растения для питания и откладки яиц.

Относительно малые размеры насекомых, их высокая реагентность на условия среды и связанная с этим напряженная работа их физиологических и, в частности, локомоторных и сенсорных систем, высокая плодовитость и хорошо выраженные инстинкты «заботы о потомстве» требуют от этой группы фитофагов, равно как и от других членистоногих, чрезвычайно высоких энергетических затрат. Поэтому насекомых вообще, и в том числе фитофагов, мы относим к организмам с высоким уровнем энергетических затрат, следовательно, и к весьма требовательным к поступлению энергетических ресурсов с пищей, а высокая плодовитость насекомых обусловливает их высокие потребности в пластических веществах.

Одним из доказательств повышенной требовательности насекомых к обеспечению энергетическими веществами могут служить результаты сравнительных исследований активности основных групп гидролитических ферментов пищеварительных трактов насекомых-фитофагов. Эти исследования, выполненные на многих видах насекомых, указывают на то, что у всех обследованных видов резко выделялись по сравнительной активности карбогидразы-ферменты, гидролизующие углеводы. Установленные соотношения активности основных групп пищеварительных ферментов насекомых хорошо отражают соответствующий уровень потребностей насекомых в веществах основного обмена - углеводах, жирах и белках. Высокий уровень автономии образа жизни насекомых-фитофагов от их кормовых растений в сочетании с хорошо развитыми способностями направленного пере-движения в пространстве и во времени и высокий уровень общей организации фитофагов проявились в специфических чертах биологической системы фитофаг - кормовое растение, которые существенно отличают ее от системы возбудитель заболеваний - кормовое растение. Эти отличительные черты указывают на большую сложность ее функционирования, а отсюда и па возникновение более сложных проблем при ее изучении и анализе. В целом же проблемы иммунитета носят в значительной мере эколого-биоценотическпй характер, их основу составляют трофические связи.

Сопряженная эволюция фитофагов с кормовыми растениями привела к перестройке многих систем: органов чувств, органов, связанных с приемом пищи, конечностей, крыльев, формы и окраски тела, системы пищеварения, выделения, накопления резервов и т. д. Пищевая специализация придала соответствующую направленность метаболизму разных видов фитофагов и тем самым сыграла решающую роль в морфогенезе многих других органов и их систем, в том числе и непосредственно не связанных с поиском, приемом и переработкой пищи насекомыми.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Похожие публикации