Экспертное сообщество по ремонту ванных комнат

Погрешность косвенных измерений пример вычислений. Оценка погрешностей косвенных измерений

В физических экспериментах чаще бывает так, что искомая физическая величина сама на опыте измерена быть не может, а является функцией других величин, измеряемых непосредственно. Например, чтобы определить объём цилиндра, надо измерить диаметр D и высоту h , а затем вычислить объем по формуле

Величины D и h будут измерены с некоторой ошибкой. Следовательно, вычисленная величина V получится также с некоторой ошибкой. Надо уметь выражать погрешность вычисленной величины через погрешности измеренных величин.

Как и при прямых измерениях можно вычислять среднюю абсолютную (среднюю арифметическую) ошибку или среднюю квадратичную ошибку.

Общие правила вычисления ошибок для обоих случаев выводятся с помощью дифференциального исчисления.

Пусть искомая величина φ является функцией нескольких переменных Х, У, Z

φ(Х, У, Z …).

Путем прямых измерений мы можем найти величины , а также оценить их средние абсолютные ошибки … или средние квадратичные ошибки s Х, s У, s Z …

Тогда средняя арифметическая погрешность Dj вычисляется по формуле

где - частные производные от φ по Х, У, Z. Они вычисляются для средних значений …

Средняя квадратичная погрешность вычисляется по формуле



Пример. Выведем формулы погрешности для вычисления объёма цилиндра.

а) Средняя арифметическая погрешность.

Величины D и h измеряются соответственно с ошибкой DD и Dh.

б) Средняя квадратичная погрешность.

Величины D и h измеряются соответственно с ошибкой s D , s h .

Погрешность величины объёма будет равна

Если формула представляет выражение удобное для логарифмирования (то есть произведение, дробь, степень), то удобнее вначале вычислять относительную погрешность. Для этого (в случае средней арифметической погрешности) надо проделать следующее.

1. Прологарифмировать выражение.

2. Продифференцировать его.

3. Объединить все члены с одинаковым дифференциалом и вынести его за скобки.

4. Взять выражение перед различными дифференциалами по модулю.

5. Заменить значки дифференциалов d на значки абсолютной погрешности D.

В итоге получится формула для относительной погрешности

Затем, зная e, можно вычислить абсолютную погрешность Dj

Пример.

Аналогично можно записать относительную среднюю квадратичную погрешность

Правила представления результатов измерения следующие:

1) погрешность должна округляться до одной значащей цифры:

правильно Dj = 0,04,

неправильно - Dj = 0,0382;

2) последняя значащая цифра результата должна быть того же порядка величины, что и погрешность:

правильно j = 9,83±0,03,

неправильно - j = 9,826±0,03;

3) если результат имеет очень большую или очень малую величину, необходимо использовать показательную форму записи - одну и ту же для результата и его погрешности, причем запятая десятичной дроби должна следовать за первой значащей цифрой результата:

правильно - j = (5,27±0,03)×10 -5 ,

неправильно - j = 0,0000527±0,0000003,

j = 5,27×10 -5 ±0,0000003,

j = = 0,0000527±3×10 -7 ,

j = (527±3)×10 -7 ,

j = (0,527±0,003) ×10 -4 .

4) Если результат имеет размерность, ее необходимо указать:

правильно – g=(9,82±0,02) м/c 2 ,

неправильно – g=(9,82±0,02).

Правила построения графиков

1. Графики строятся на миллиметровой бумаге.

2. Перед построением графика необходимо четко определить, какая переменная величина является аргументом, а какая функцией. Значения аргумента откладываются на оси абсцисс (ось х ), значения функции - на оси ординат (ось у ).

3. Из экспериментальных данных определить пределы изменения аргумента и функции.

4. Указать физические величины, откладываемые на координатных осях, и обозначить единицы величин.

5. Нанести на график экспериментальные точки, обозначив их (крестиком, кружочком, жирной точкой).

6. Провести через экспериментальные точки плавную кривую (прямую) так, чтобы эти точки приблизительно в равном количестве располагались по обе стороны от кривой.

Любые измерения всегда производятся с какими-то погрешностями, связанными с ограниченной точностью измерительных приборов, неправильным выбором, и погрешностью метода измерений, физиологией экспериментатора, особенностями измеряемых объектов, изменением условий измерения и т.д. Поэтому в задачу измерения входит нахождение не только самой величины, но и погрешности измерения, т.е. интервала, в котором вероятнее всего находится истинное значение измеряемой величины. Например, при измерении отрезка времени t секундомером с ценой деления 0,2 с можно сказать, что истинное значение его находится в интервале от с до
с. Таким образом, измеряемая величина всегда содержит в себе некоторую погрешность
, где и X – соответственно истинное и измеренное значения исследуемой величины. Величина
называется абсолютной погрешностью (ошибкой) измерения, а выражение
, характеризующее точность измерения, называется относительной погрешностью.

Вполне естественно стремление экспериментатора произвести всякое измерение с наибольшей достижимой точностью, однако такой подход не всегда целесообразен. Чем точнее мы хотим измерить ту ил иную величину, тем сложнее приборы мы должны использовать, тем больше времени потребуют эти измерения. Поэтому точность окончательного результата должна соответствовать цели проводимого эксперимента. Теория погрешностей дает рекомендации, как следует вести измерения и как обрабатывать результаты, чтобы величина погрешности была минимальной.

Все возникающие при измерениях погрешности обычно разделяют на три типа – систематические, случайные и промахи, или грубые ошибки.

Систематические погрешности обусловлены ограниченной точностью изготовления приборов (приборные погрешности), недостатками выбранного метода измерений, неточностью расчетной формулы, неправильной установкой прибора и т.д. Таким образом, систематические погрешности вызываются факторами, действующими одинаковым образом при многократном повторении одних и тех же измерений. Величина этой погрешности систематически повторяется либо изменяется по определенному закону. Некоторые систематические ошибки могут быть исключены (на практике этого всегда легко добиться) путем изменения метода измерений, введение поправок к показаниям приборов, учета постоянного влияния внешних факторов.

Хотя систематическая (приборная) погрешность при повторных измерениях дает отклонение измеряемой величины от истинного значения в одну сторону, мы никогда не знаем в какую именно. Поэтому приборная погрешность записывается с двойным знаком

Случайные погрешности вызываются большим числом случайных причин (изменением температуры, давления, сотрясения здания и т.д.), действия которых на каждое измерение различно и не может быть заранее учтено. Случайные погрешности происходят также из-за несовершенства органов чувств экспериментатора. К случайным погрешностям относятся и погрешности обусловленные свойствами измеряемого объекта.

Исключить случайны погрешности отдельных измерений невозможно, но можно уменьшить влияние этих погрешностей на окончательный результат путем проведения многократных измерений. Если случайная погрешность окажется значительно меньше приборной (систематической), то нет смысла дальше уменьшать величину случайной погрешности за счет увеличения числа измерений. Если же случайная погрешность больше приборной, то число измерений следует увеличить, чтобы уменьшить значение случайной погрешности и сделать ее меньше или одного порядка с погрешностью прибора.

Промахи, или грубые ошибки, - это неправильные отсчеты по прибору, неправильная запись отсчета и т.п. Как правило, промахи, обусловленные указанными причинами хорошо заметны, так как соответствующие им отсчеты резко отличаются от других отсчетов. Промахи должны быть устранены путем контрольных измерений. Таким образом, ширину интервала в котором лежат истинные значения измеряемых величин, будут определять только случайные и систематические погрешности.

2 . Оценка систематической (приборной) погрешности

При прямых измерениях значение измеряемой величины отсчитывается непосредственно по шкале измерительного прибора. Ошибка в отсчете может достигать нескольких десятых долей деления шкалы. Обычно при таких измерениях величину систематической погрешности считают равной половине цены деления шкалы измерительного прибора. Например, при измерении штангенциркулем с ценой деления 0,05 мм величина приборной погрешности измерения принимают равной 0,025 мм.

Цифровые измерительные приборы дают значение измеряемых ими величин с погрешностью, равной значению одной единицы последнего разряда на шкале прибора. Так, если цифровой вольтметр показывает значение20,45 мВ, то абсолютная погрешность при измерении равна
мВ.

Систематические погрешности возникают и при использовании постоянных величин, определяемых из таблиц. В подобных случаях погрешность принимается равной половине последнего значащего разряда. Например, если в таблице значение плотности стали дается величиной, равной 7,9∙10 3 кг/м 3 , то абсолютная погрешность в этом случае равна
кг/м 3 .

Некоторые особенности в расчете приборных погрешностей электроизмерительных приборов будут рассмотрены ниже.

При определении систематической (приборной) погрешности косвенных измерений функциональной величины
используется формула

, (1)

где - приборные ошибки прямых измерений величины , - частные производные функции по переменной .

В качестве примера, получим формулу для расчета систематической погрешности при измерении объема цилиндра. Формула вычисления объема цилиндра имеет вид

.

Частные производные по переменным d и h будут равны

,
.

Таким образом, формула для определения абсолютной систематической погрешности при измерении объема цилиндра в соответствии с (2. ..) имеет следующий вид

,

где
и
приборные ошибки при измерении диаметра и высоты цилиндра

3. Оценка случайной погрешности.

Доверительный интервал и доверительная вероятность

Ля подавляющего большинства простых измерений достаточно хорошо выполняется так называемый нормальный закон случайных погрешностей (закон Гаусса) , выведенный из следующих эмпирических положений.

    погрешности измерений могут принимать непрерывный ряд значений;

    при большом числе измерений погрешности одинаковой величины, но разного знака встречаются одинаково часто,

    чем больше величина случайной погрешности, тем меньше вероятность ее появления.

График нормального закона распределения Гаусса представлен на рис.1. Уравнение кривой имеет вид

, (2)

где
- функция распределения случайных ошибок (погрешностей), характеризующая вероятность появления ошибки
, σ – средняя квадратичная ошибка.

Величина σ не является случайной величиной и характеризует процесс измерений. Если условия измерений не изменяются, то σ остается постоянной величиной. Квадрат этой величины называют дисперсией измерений. Чем меньше дисперсия, тем меньше разброс отдельных значений и тем выше точность измерений.

Точное значение средней квадратичной ошибки σ, как и истинное значение измеряемой величины, неизвестно. Существует так называемая статистическая оценка этого параметра, в соответствии с которой средняя квадратичная ошибка равняется средней квадратичной ошибке среднего арифметического . Величина которой определяется по формуле

, (3)

где - результат i -го измерения; - среднее арифметическое полученных значений; n – число измерений.

Чем больше число измерений, тем меньше и тем больше оно приближается к σ. Если истинное значение измеряемой величины μ, ее среднее арифметическое значение, полученное в результате измерений , а случайная абсолютная погрешность , то результат измерений запишется в виде
.

Интервал значений от
до
, в который попадает истинное значение измеряемой величины μ, называется доверительным интервалом. Поскольку является случайной величиной, то истинное значение попадает в доверительный интервал с вероятностью α, которая называется доверительной вероятностью, или надежностью измерений. Эта величина численно равна площади заштрихованной криволинейной трапеции. (см. рис.)

Все это справедливо для достаточно большого числа измерений, когда близка к σ. Для отыскания доверительного интервала и доверительной вероятности при небольшом числе измерений, с которым мы имеем дело в ходе выполнения лабораторных работ, используется распределение вероятностей Стьюдента. Это распределение вероятностей случайной величины , называемой коэффициентом Стьюдента , дает значение доверительного интервала в долях средней квадратичной ошибки среднего арифметического .

. (4)

Распределение вероятностей этой величины не зависит от σ 2 , а существенно зависит от числа опытов n . С увеличением числа опытов n распределение Стьюдента стремится к распределению Гаусса.

Функция распределения табулирована (табл.1). Значение коэффициента Стьюдента находится на пересечении строки, соответствующей числу измерений n , и столбца, соответствующего доверительной вероятности α

Таблица 1.

Пользуясь данными таблицы, можно:

    определить доверительный интервал, задаваясь определенной вероятностью;

    выбрать доверительный интервал и определить доверительную вероятность.

При косвенных измерениях среднюю квадратичную ошибку среднего арифметического значения функции вычисляют по формуле

. (5)

Доверительный интервал и доверительная вероятность определяются так же, как и в случае прямых измерений.

Оценка суммарной погрешности измерений. Запись окончательного результата.

Суммарную погрешность результата измерений величины Х будем определять как среднее квадратичное значение систематической и случайной погрешностей

, (6)

где δх – приборная погрешность, Δх – случайная погрешность.

В качестве Х может быть как непосредственно, так и косвенно измеряемая величина.

, α=…, Е=… (7)

Следует иметь в виду, что сами формулы теории ошибок справедливы для большого число измерений. Поэтому значение случайной, а следовательно, и суммарной погрешности определяется при малом n с большой ошибкой. При вычислении Δх при числе измерений
рекомендуется ограничиваться одной значащей цифрой, если она больше 3 и двумя, если первая значащая цифра меньше 3. Например, если Δх = 0,042, то отбрасываем 2 и пишем Δх =0,04, а если Δх =0,123, то пишем Δх =0,12.

Число разрядов результата и суммарной погрешности должно быть одинаковым. Поэтому среднее арифметическое погрешности должно быть одинаковым. Поэтому среднее арифметическое вычисляется вначале на один разряд больше, чем измерение, а при записи результата его значение уточняется до числа разрядов суммарной ошибки.

4. Методика расчета погрешностей измерений.

Погрешности прямых измерений

При обработке результатов прямых измерений рекомендуется принять следующий порядок выполнение операций.

. (8)


.

.

    Определяется суммарная погрешность

    Оценивается относительная погрешность результата измерений

.

    Записывается окончательный результат в виде

, с α=… Е=…%.

5. Погрешность косвенных измерений

При оценке истинного значения косвенно измеряемой величины , являющейся функцией других независимых величин
, можно использовать два способа.

Первый способ используется, если величина y определяется при различных условиях опыта. В этом случае для каждого из значений вычисляется
, а затем определяется среднее арифметическое из всех значений y i

. (9)

Систематическая (приборная) погрешность находится на основании известных приборных погрешностей всех измерений по формуле. Случайная погрешность в этом случае определяется как ошибка прямого измерения.

Второй способ применяется, если данная функция y определяется несколько раз при одних и тех же измерений. В этом случае величина рассчитывается по средним значениям . В нашем лабораторном практикуме чаще используется второй способ определения косвенно измеряемой величины y . Систематическая (приборная) погрешность, как и при первом способе, находится на основании известных приборных погрешностей всех измерений по формуле

Для нахождения случайной погрешности косвенного измерения вначале рассчитываются средние квадратичные ошибки среднего арифметического отдельных измерений. Затем находится средняя квадратичная ошибка величины y . Задание доверительной вероятности α, нахождение коэффициента Стьюдента , определение случайной и суммарной ошибок осуществляются так же, как и в случае прямых измерений. Аналогичным образом представляется результат всех расчетов в виде

, с α=… Е=…%.

6. Пример оформления лабораторной работы

Лабораторная работа №1

ОПРЕДЕЛЕНИЕ ОБЪЕМА ЦИЛИНДРА

Принадлежности: штангенциркуль с ценой деления 0,05 мм, микрометр с ценой деления 0,01 мм, цилиндрическое тело.

Цель работы: ознакомление с простейшими физическими измерениями, определение объема цилиндра, расчет погрешностей прямых и косвенных измерений.

Порядок выполнения работы

Провести не менее 5 раз измерения штангенциркулем диаметра цилиндра, а микрометром его высоту.

Расчетная формула для вычисления объема цилиндра

где d – диаметр цилиндра; h – высота.

Результаты измерений

Таблица 2.

;

Абсолютная погрешность

;
.

5. Относительная погрешность, или точность измерений

; Е = 0,5%.

6. Запись окончательного результата

Окончательный результат для исследуемой величины записывается в виде

, Е = 0,5%.

Примечание. В окончательной записи число разрядов результата и абсолютной погрешности должно быть одинаковым.

6. Графическое представление результатов измерений

Результаты физических измерений очень часто представляют в графической форме. Графики обладают рядом важных преимуществ и ценных свойств:

а) дают возможность определить вид функциональной зависимости и пределы, в которых она справедлива;

б) позволяют наглядно проводить сравнение экспериментальных данных с теоретической кривой;

в) при построении графика сглаживают скачки в ходе функции, возникающие за счет случайных ошибок;

г) дают возможность определять некоторые величины или проводить графическое дифференцирование, интегрирование, решение уравнения и др.

Рафики, как правило, выполняются на специальной бумаге (миллиметровой, логарифмической, полулогарифмической). Принято по горизонтальной оси откладывать независимую переменную, т.е. величину, значение которой задает сам экспериментатор, а по вертикальной оси – ту величину, которую он при этом определяет. Следует иметь в виду, что пересечение координатных осей не обязательно должно совпадать с нулевыми значениями x и у. При выборе начала координат следует руководствоваться тем, чтобы полностью использовалась вся площадь чертежа (рис.2.).

На координатах осях графика указываются не только названия или символы величин, но и единицы их измерения. Масштаб по осям координат следует выбирать так, чтобы измеряемые точки располагались по всей площади листа. При этом масштаб должен быть простым, чтобы при нанесении точек на график не производить арифметических подсчетов в уме.

Экспериментальные точки на графике должны изображаться точно и ясно. Точки, полученные при различных условиях эксперимента (например, при нагревании и охлаждении), полезно наносить разными цветами или разными значками. Если известна погрешность эксперимента, то вместо точки лучше изображать крест или прямоугольник, размеры которого по осям соответствуют этой погрешности. Не рекомендуется соединять экспериментальные точки между собой ломаной линией. Кривую на графике следует проводить плавно, следя за тем, чтобы экспериментальные точки располагались как выше, так и ниже кривой, как показано на рис.3.

При построении графиков помимо системы координат с равномерным масштабом применяют так называемые функциональные масштабы. Подобрав подходящие функции x и y, можно на графике получить более простую линию, чем при обычном построении. Часто это бывает нужно при подборе к данному графику формулы для определения его параметров. Функциональные масштабы применяют также в тех случаях, когда на графике нужно растянуть или сократить какой-либо участок кривой. Чаще всего из функциональных масштабов используют логарифмический масштаб (рис.4).

Документ

От конкретных условий, требований и возможностей оценки погрешности результатов измерений . Согласно общим положениям информационной теории...

  • Погрешности измерений

    Документ

    В.И.Ивероновой. М., Наука, 1967. 4. П.В.Новицкий, И.А.Зограф. Оценка погрешностей результатов измерений . Л., Энергоатомиздат, 1991. 5. Лабораторные работы по...

  • Методические указания по определению погрешностей при измерениях в лабораторном практикуме по физике

    Методические указания

    ... измерения искомой вели­чины в обязательном порядке входит оценка погрешности полу­ченного результата . Без такой оценки результат ... значение абсолютной погрешности и сам результат измерений . Как правило, точность оценки погрешности оказывается очень...

  • № измерения

  • Основные законы Динамики. Законы Ньютона - первый, второй, третий. Принцип относительности Галилея. Закон всемирного тяготения. Сила тяжести. Силы упругости. Вес. Силы трения - покоя, скольжения, качения + трение в жидкостях и газах.
  • Кинематика. Основные понятия. Равномерное прямолинейное движение. Равноускоренное движение. Равномерное движение по окружности. Система отсчёта. Траектория, перемещение, путь, уравнение движения, скорость, ускорение, связь линейной и угловой скорости.
  • Простые механизмы. Рычаг (рычаг первого рода и рычаг второго рода). Блок (неподвижный блок и подвижный блок). Наклонная плоскость. Гидравлический пресс. Золотое правило механики
  • Законы сохранения в механике. Механическая работа, мощность, энергия, закон сохранения импульса, закон сохранения энергии, равновесие твердых тел
  • Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости
  • Механические колебания. Свободные и вынужденные колебания. Гармонические колебания. Упругие колебания. Математический маятник. Превращения энергии при гармонических колебаниях
  • Механические волны. Скорость и длина волны. Уравнение бегущей волны. Волновые явления (дифракция. интерференция...)
  • Гидромеханика и аэромеханика. Давление, гидростатическое давление. Закон Паскаля. Основное уравнение гидростатики. Сообщающиеся сосуды. Закон Архимеда. Условия плавания тел. Течение жидкости. Закон Бернулли. Формула Торричели
  • Молекулярная физика. Основные положения МКТ. Основные понятия и формулы. Свойства идеального газа. Основное уравнение МКТ. Температура. Уравнение состояния идеального газа. Уравнение Менделеева-Клайперона. Газовые законы - изотерма, изобара, изохора
  • Волновая оптика. Корпускулярно-волновая теория света. Волновые свойства света. Дисперсия света. Интерференция света. Принцип Гюйгенса-Френеля. Дифракция света. Поляризация света
  • Термодинамика. Внутренняя энергия. Работа. Количество теплоты. Тепловые явления. Первый закон термодинамики. Применение первого закона термодинамики к различным процессам. Уравнение теплового балланса. Второй закон термодинамики. Тепловые двигатели
  • Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.
  • Постоянный электрический ток. Закон Ома для участка цепи. Работа и мощность постоянного тока. Закон Джоуля-Ленца. Закон Ома для полной цепи. Закон электролиза Фарадея. Электрические цепи - последовательное и параллельное соединение. Правила Кирхгофа.
  • Электромагнитные колебания. Свободные и вынужденные электромагнитные колебания. Колебательный контур. Переменный электрический ток. Конденсатор в цепи переменного тока. Катушка индуктивности ("соленоид") в цепи переменного тока.
  • Элементы теории относительности. Постулаты теории относительности. Относительность одновременности, расстояний, промежутков времени. Релятивистский закон сложения скоростей. Зависимость массы от скорости. Основной закон релятивистский динамики...
  • Вы сейчас здесь: Погрешности прямых и косвенных измерений. Абсолютная, относительная погрешность. Систематические и случайные погрешности. Среднее квадратическое отклонение (ошибка). Таблица определения погрешностей косвенных измерений различных функций.
  • Пусть известны две независимо измеренных физических величины и с погрешностями и соответственно. Тогда справедливы следующие правила:

    1. Абсолютная погрешность суммы (разности) есть сумма абсолютных погрешностей. То есть, если

    Более разумная (учитывающая то, что величины и независимы и маловероятно, что их истинные значения одновременно окажутся на краях диапазонов) оценка получается по формуле:

    На всех школьных олимпиадах допускается применение любой из этих двух формул. Аналогичные формулы справедливы для случая нескольких (более двух) слагаемых.

    Пример:

    Пусть величина , ,

    .

    2. Относительная погрешность произведения (частного) есть сумма относительных погрешностей.

    То есть, если

    Как и в предыдущем случае, более разумной будет формула

    Аналогичные формулы справедливы для случая нескольких (более двух) множителей.

    Таким образом, в результате сложения двух величин сначала вычисляется абсолютная погрешность величины, а после этого может быть вычислена относительная погрешность.

    Пример:

    Пусть величина , ,


    3. Правило для возведения в степень. Если , то .

    Пример:


    4. Правило умножения на константу. Если .

    Пример:

    5. Более сложные функции величин разбиваются на более простые вычисления, погрешности которых можно рассчитать по формулам представленным выше.

    Пример:

    Пусть

    6. Если расчётная формула сложна и не сводиться к описанным выше случаем, то, школьники знакомые с понятием частной производной могут найти погрешность косвенного измерения следующим образом: пусть , тогда

    или более простой оценкой:

    Пример:

    Пусть

    7. Школьники, не знакомые с производными, могут пользоваться методом границ, который состоит в следующем: пусть нам известно, что и для каждой величины диапазон в котором лежит её истинное значение. Рассчитаем минимальное и максимальное возможное значение величины на области задания величин :

    За абсолютную погрешность величины возьмём полуразность максимального и минимального значения:

    Пример:

    Пусть

    Правила округления

    При обработке результатов измерений часто приходится производить округление. При этом нужно следить, чтобы ошибка, возникающая при округлении, была хотя бы на порядок меньше остальных погрешностей. Однако оставлять слишком много значащих цифр тоже неправильно, поскольку влечёт за собой потерю драгоценного времени. В большинстве случаев бывает достаточно погрешность округлить до двух значащих цифр, а результат до того же порядка, что и погрешность. При записи же конечного ответа принято оставлять в погрешности только одну значащую цифру, за исключением случая, когда эта цифра единица, тогда нужно оставить две значащих цифры в погрешности. Также часто порядок числа выносится за скобку, таким образом, чтобы первая значащая цифра числа осталась либо в порядке единиц, либо в порядке десятых.



    Например, пусть были проведены измерения модуля Юнга стали и Алюминия и были получены следующие значения (до округления):

    , , , .

    Правильно записанный конечный ответ тогда будет иметь вид:

    Построение графиков

    Во многих задачах, предлагаемых на физических олимпиадах школьников, требуется снять зависимость одной физической величины от другой, а затем проанализировать эту зависимость (сравнить экспериментальную зависимость с теоретической, определить неизвестные параметры теоретической зависимости). График является наиболее удобным и наглядным способом представления данных и их дальнейшего анализа. Поэтому в критериях оценивания большинства экспериментальных задач присутствуют баллы за график, даже если построение графика не требуется явно в условии. Таким образом, если при решении задачи Вы сомневаетесь нужно ли в данной задаче построение графика или нет - сделайте выбор в пользу графика.

    Правила построения графика

    1. График строится на миллиметровой бумаге. Если на экспериментальном туре олимпиады миллиметровая бумага не была предоставлена сразу, нужно попросить её у организаторов.

    2. График нужно подписать в верхней части, чтобы всегда можно было установить, какой участник строил этот график. В работе следует указать, что был построен соответствующий график, на случай если график будет потерян во время проверки.



    3. Ориентация миллиметровой бумаги может быть как альбомная, так и книжная.

    4. На графике обязательно должны присутствовать координатные оси. Вертикальная ось проводится в левой части графика, а горизонтальная ось в нижней части.

    5. Вертикальная ось должна соответствовать значениям функции, а горизонтальная – значениям аргумента.

    6. Оси на графике рисуются с отступом 1-2см от края миллиметровой бумаги.

    7. Каждая ось должна быть подписана, то есть должна быть указана физическая величина, отложенная вдоль этой оси, и (через запятую) единица её измерения. Записи вида « », « » и « » эквивалентны, но первые два варианта предпочтительнее. Горизонтальная ось подписывается слева у верхнего конца, а вертикальная снизу у правого конца.

    8. Оси не обязательно должны пересекаться в точке (0,0).

    9. Масштаб графика и положение начала отсчёта на координатных осях выбираются так, чтобы наносимые точки располагались по возможности на всей площади листа. При этом нули координатных осей могут вообще не попадать на график.

    10. Линии, проведённые на миллиметровой бумаге через сантиметр, должны попадать на круглые значения величин. С графиком удобно работать, если 1 см на миллиметровой бумаги соответствуют 1, 2, 4, 5 *10 n единиц измерения по данной оси. Часть делений на оси нужно подписать. Подписанные деления должны находится на равном расстоянии друг от друга. Подписанных делений на оси должно быть не менее 4х и не более 10ти.

    11. Точки на график нужно наносить так, чтобы они были чётко и ясно видны. Для того чтобы показать, что величина наносимая на график имеет погрешность, из каждой точки проводятся отрезки вверх и вниз, вправо и влево. Длина горизонтальных отрезков соответствует погрешности величины, отложенной по горизонтальной оси, длина вертикальных отрезков - погрешности величины, отложенной по вертикальной. Таким образом, обозначаются области определения экспериментальной точки, называемые крестами ошибок. Кресты ошибок обязательны к нанесению на графике, за исключением случаев: в условии задачи дано непосредственное указание не оценивать погрешности, погрешность составляет меньше 1 мм в масштабе соответствующей оси. В последнем случае необходимо указать, что погрешность значений слишком мала для нанесения по этой оси. В таких случаях считается, что размер точки соответствует ошибке измерения.

    12. Стремитесь к тому, чтобы ваш график был удобен, понятен и аккуратен. Стройте его карандашом, чтобы можно было исправить ошибки. Не подписывайте рядом с точкой соответствующее ей значение - это загромождает график. Если на одном графике показано сразу несколько зависимостей, используйте разные символы или цвета для точек. Для определения, какой тип экспериментальных точек, какой зависимости соответствует, используйте легенду графика. На графике допускаются зачёркивания (если подвёл ластик или под рукой не оказалось хорошего карандаша), но делать их нужно аккуратно. Не стоит использовать штрих-корректор - это выглядит некрасиво.

    Примечание: все вышеперечисленные правила происходят исключительно из соображений удобства работы с графиком. Однако, при проверке работ на олимпиадах жюри пользуются этими правилами как формальными критериями: плохо выбран масштаб - минус полбалла. Поэтому на олимпиаде следует неукоснительно придерживаться этих правил.

    Пример:

    Справа приведен график, построенный не по критериям, а слева, построенный по указанным выше правилам.

    Чтобы понять основной принцип оценки погрешностей косвенных измерений, следует проанализировать источник этих погрешностей.

    Пусть физическая величина Y есть функция непосредственно измеряемой величины х ,
    Y = f(x).

    Величина х имеет погрешность Dх . Именно эта погрешность Dх - неточность в определении аргумента x является источником погрешности физической величины Y , являющейся функцией f (x ).

    Приращение Dх аргумента х определяет собой приращение функции .

    Погрешность аргумента Dх косвенно определяемой физической величины Y определяет собой погрешность , где Dх - погрешность физической величины, найденной в прямых измерениях.

    Если физическая величина является функцией нескольких непосредственно
    измеряемых величин , то, проводя аналогичные рассуждения для каждого аргумента xi , получим:

    Очевидно, что погрешность, рассчитанная по этой формуле, является максимальной и соответствует ситуации, когда все аргументы изучаемой функции имеют одновременно максимальное отклонение от своих средних значений. На практике такие ситуации маловероятны и реализуются крайне редко, поэтому следует рассчитывать
    погрешность результата косвенных измерений .
    (Эта формула доказывается в теории ошибок .)
    В реальных измерениях относительная точность различных величин х i может сильно отличаться. При этом, если для одной из величин xm выполняется неравенство , где i =1,…, m -1, m +1,…, n , то можно считать, что погрешность косвенно определенной величины DY определяется погрешностью Dxm :

    Пример.
    При измерении скорости V полета пули методом вращающихся дисков, скорость пули V =360lN / j есть результат косвенных измерений, где l - расстояние между дисками, , N - число оборотов в единицу времени, известное с точностью , j - угол поворота измеренный в градусах , следовательно, для углов поворота j £ 70о определяющим точность фактором будет погрешность угла поворота дисков.

    Итак, при вычислении погрешности косвенно определяемой физической величины надо прежде всего выявить наименее точно определенную в прямых измерениях величину и, если , считать , пренебрегая погрешностями остальных х i i ¹ m .

    Рассмотрим наиболее распространенные случаи взаимосвязи физических величин.

    В данном случае проще сначала вычислить относительную погрешность .

    Это выражение дает завышенную погрешность. Более точная формула полученная из теории ошибок имеет вид: .

    Переходя от дифференциалов к конечным приращениям, имеем:
    .
    В этом случае абсолютная погрешность DY пропорциональна относительной погрешности непосредственно измеряемой величины x . Если Dx = const , то с ростом х DY будет уменьшаться (вот почему графики логарифмических зависимостей как правило отличаются неравновеликими погрешностями DY ).
    Пример.

    При определении тройной точки нафталина необходимо построить зависимость ln P от обратной температуры, где Р давление в мм ртутного столба, определенное с точностью до 1 мм рт. ст.

    Рис 1.
    Итак, для логарифмических функций вида Y = A logax проще сразу вычислять абсолютную погрешность, которая пропорциональна относительной погрешности переменной x:

    Похожие публикации