Экспертное сообщество по ремонту ванных комнат

Опускные кессоны из металла для устройства фундаментов. Опускные колодцы и кессоны

ТИПОВАЯ ТЕХНОЛОГИЧЕСКАЯ КАРТА НА СООРУЖЕНИЕ ФУНДАМЕНТОВ С ПРИМЕНЕНИЕМ ОПУСКНЫХ КОЛОДЦЕВ И КЕССОНОВ

МОНТАЖ КЕССОНОВ

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

Типовая технологическая карта разработана на монтаж кессонов.

Общие сведения

Погружение кессонов

Кессонный метод возведения фундаментов глубокого заложения применяют в тех случаях, когда наблюдается значительный приток воды и осложняются работы по осушению, а также когда грунты содержат крупные включения твердых пород. Кессоны применяют в непосредственной близости от сооружений, когда есть опасность выпора грунта из-под их подошвы.

Кессон состоит из кессонной камеры , подкессонного строения и шлюзового устройства (рис.1). Кессонную камеру обычно делают из железобетона. Стенки камеры заканчиваются ножом. Высота камеры от банкетки до потолка принимается не менее 2,2 м. В потолке камеры предусмотрено отверстие для установки шахтной трубы. Надкессонное строение чаще всего выполняют в виде сплошного массива из монолитного бетона или железобетона. Для опускания и подъема людей и выполнения грузоподъемных операций предусматривается шлюзовой аппарат, который соединен с кессонной камерой шахтными трубами. Сверху кессон оснащен подъемным механизмом. Для подачи сжатого воздуха монтируются трубопроводы из двух ниток: рабочей и резервной. Для обеспечения сжатым воздухом монтируется компрессорная.

Рис.1. Общий вид кессона

1 - подмости; 2 - шлюзовой аппарат; 3 - материальный шлюзовой прикамерок; 4 - людской шлюзовой прикамерок; 5 - шахтные трубы; 6 - трубопровод сжатого воздуха; 7 - бадья с грунтом; 8 - надкессонная кладка; 9 - надкессонная обшивка; 10 - потолок кессона; 11 - кессонная камера; 12 - стены кессона; 13 - лестница; 14 - тельфер; 15 - вагонетка с грунтом

Сущность метода заключается в том , что во время погружения кессона в кессонную камеру нагнетается сжатый воздух, предотвращающий поступление в камеру подземных вод и наплывов грунта. Разработку грунта ведут в осушенном пространстве камеры. Чтобы открыть наружную дверь, когда кессон находится под давлением, нужно закрыть люк в шахту и снизить давление в шлюзовом аппарате. Когда внешнее и внутреннее давления уравновешиваются, дверь можно открывать. При этом давление воздуха в шахте и кессоне сохранится. Войдя в шлюзовую камеру, наружную дверь закрывают. Затем поднимают давление воздуха внутри камеры до уровня давления в кессоне. Только после этого можно открывать люк шахты для входа рабочих или транспортировки грунта. Шахту монтируют из звеньев труб на фланцах. Не можно наращивать при опускании, не снижая давления в кессоне. Для этого закрывают люк на потолке кессона, снижают давление в шахте и выполняют работы по наращиванию.

При сооружении кессонной камеры и надкессонного строения предъявляют такие же требования, что и при сооружении опускных колодцев. Технология производства бетонных, арматурных и других работ аналогична технологии этих работ по сооружению опускных колодцев.

Кессоны, как и опускные колодцы, погружаются в грунт под действием собственной массы. Но погружению здесь препятствует не только сопротивление грунта, но и давление воздуха в кессонной камере. Сначала кессон погружают без подачи сжатого воздуха в камеру, но как только появляются подземные воды, кессон переводят на режим воздушного давления. Воздух отжимает воду из кессонной камеры, благодаря чему в ней можно разрабатывать грунт.

Воздушное давление в камере кессона должно удовлетворять требованию

где - избыточное воздушное давление в кессонной камере, Па; - гидростатический напор на уровне банкетки ножа, м; - плотность воды, т/м.

Эффективность погружения определяется следующим соотношением активных и реактивных сил:

, (2)

где - вес кессонной камеры, кН, - вес надкессонного массива, кН; - сила бокового трения кессона о грунт, кН; - давление грунта под ножом кессона, кПа; - избыточное давление воздуха в кессоне, кПа; - площадь внутренней поверхности ножевой части кессона, м; - площадь кессона по наружному очертанию, м.

Регулируя в определенных пределах избыточное давление воздуха, можно управлять процессом погружения и уровнем воды в кессоне.

Сооружение фундаментов глубокого заложения кессонным методом включает следующие процессы: подготовительные работы, изготовление кессона, погружение кессона до проектной отметки, заполнение кессонной камеры.

В течение подготовительного периода должна быть смонтирована компрессорная станция с резервными агрегатами и разводящая сеть.

Для погружения наплавным способом кессонную камеру частично обстраивают стеной оболочки с таким расчетом, чтобы при закрытом потолочном люке камеры пустая оболочка придавала сооружению надежную плавучесть во время транспортировки. Отбуксированный к месту погружения кессон расчаливают к анкерным сваям. Обеспечив точность посадки кессона, его затопляют, нарастив предварительно шахту так, чтобы после погружения она возвышалась над поверхностью воды. Затем на шахте монтируют шлюзовую камеру, подают сжатый воздух в кессонную камеру, осушают ее и приступают к погружению.

В процессе погружения кессона стены наращивают до верха стыка звеньев шахты. В момент погружения ниже уровня воды давление воздуха в кессоне поднимают и по мере углубления увеличивают его так, чтобы несколько превысить гидростатическое давление на уровне ножа. Только в этом случае обеспечивается полное осушение кессонной камеры.

Грунт в кессонной камере разрабатывают методами гидромеханизации: размывают гидромониторами и удаляют пульпу эжекторами или гидроэлеваторами. Вначале устраивают зумпфы в центральной части кессонной камеры. В зумпфе устанавливают всасывающее устройство гидроэлеватора. Управление стволами гидромонитора может быть ручным или дистанционным, когда оператор находится в специальной надкессонной камере, где сохраняется нормальное давление воздуха. В последнем случае за ходом работ наблюдение ведут в перископы. Гидромеханизированную разработку плотных грунтов ведут от ножа к середине, в слабых грунтах - только в средней части камеры. Слабый грунт из-под ножа выдавливается под действием веса сооружения и сползает в центральную воронку, где подвергается размыву струей гидромонитора и удаляется гидроэлеватором.

По мере опускания кессона возрастают силы бокового трения и давление сжатого воздуха на потолок камеры, вследствие чего погружение кессона замедляется, а при равновесии сил может совсем прекратиться. В этом случае для дальнейшего погружения применяют форсированный способ посадки кессона . Для этого по периметру ножа разрабатывают траншею глубиной до 0,5 м, затем рабочие покидают кессонную камеру и избыточное давление в ней снижают, но не более чем наполовину. В результате нарушения равновесия активных и реактивных сил кессон погружается до упора ножа в дно траншеи. После этого давление воздуха опять поднимают и разрабатывают грунт в центре камеры. Если грунты не поддаются гидромеханизации, то их разрабатывают пневматическими инструментами и мелкими взрывами. Плотные грунты вначале разрабатывают вдоль периметра ножа в виде траншеи глубиной до 0,5 м, начиная от фиксированных точек, и так, чтобы грунт между ними был вынут в последнюю очередь. Затем расширяют траншею, вырабатывая грунт в сторону ножа. В результате опорная площадь под ножом уменьшается, и кессон погружается до упора ножа в дно траншеи. При проходке скальных пород выработку траншеи расширяют за пределы ножа наружу на 10-15 см, чтобы предотвратить заклинивание кессона осколками грунта и неровностями и избежать перекоса.

Работать в кессоне можно при давлении не более 0,4 MПa, что соответствует глубине 40 м. Наибольшая глубина погружения кессона составляет 38 м, так как давление в кессоне должно быть на 10% выше давления столба воды. Погружение кессонов на большую глубину возможно при автоматической разработке грунтов или дистанционным управлением механизмами.

Кессонные камеры после погружения на проектную отметку должны заполняться материалом, предусмотренным в проекте, с плотной подбивкой материала под потолок кессона. Оставшиеся пустоты заполняются цементно-песчаным раствором, нагнетаемым через закладные трубки под давлением не менее 0,1 MПa. В некоторых случаях допускается посадка потолка кессона непосредственно на грунт. Материалами заполнения кессонной камеры являются бетон, бутобетон и песок. Заполнение камеры начинается с укладки по всей площади кессона слоя бетона или песка такой толщины, чтобы оставшаяся высота камеры допускала дальнейшее выполнение работ по устройству забутовки. Толщину предварительно укладываемого слоя принимают 0,5 м. Вначале производят подбивку под скошенную часть ножа (консоли), затем заполняют среднюю часть рабочей камеры кессона. В некоторых случаях кессонную камеру заполняют местными грунтовыми материалами (глинами или суглинками).

2. ОРГАНИЗАЦИЯ И ТЕХНОЛОГИЯ ВЫПОЛНЕНИЯ РАБОТ

Основные оси опускных колодцев или кессонов должны быть закреплены на местности посредством обносок (рис.2). Положение каждой основной оси колодца или кессона следует нанести на четырех обносках - по две обноски с каждой из четырех сторон сооружения, чтобы обеспечить возможность постоянного контроля реек, укрепленных на наружной боковой поверхности сооружения (по его основным осям). Контроль положения каждой рейки осуществляется визированием по меткам двух обносок.


Рис.2. Схема закрепления основных осей опускного колодца или кессона на местности

1 - колодец или кессон; 2 - обноски; 3 - рейки, закрепленные на колодце; 4 - границы призмы обрушения

Обноски должны быть установлены на площадках, расположенных вне зоны возможных подвижек грунта в вертикальном и горизонтальном направлениях (за пределами призм обрушения), а на акваториях - вне мест приливно-отливных колебаний и волновых воздействий.

Устройство фундаментов капитальных сооружений, подводящих и отводящих коллекторов, а также монтаж трубопроводов и других коммуникаций в пределах призмы обрушения допускается только после завершения опускания кессона бетонирования днища, полного закрепления колодца на проектной отметке, отключения системы осушения и восстановления естественного состояния окружающего грунтового массива (восстановления естественного уровня грунтовых вод, оттаивания грунта после замораживания и т.п.).

Размещение в пределах призмы обрушения временных сооружений и оборудования для строительства кессонов (бетонорастворный и глинорастворный узлы, компрессорная станция, краны и т.п.) допускается при условии принятия мер по обеспечению их нормальной работы в случае возможного перемещения грунта.

В связи с тем что при опускании кессонов не исключена возможность подвижек и оползания грунта в пределах их призм обрушения, не допускается в указанной зоне строительство капитальных сооружений в период опускания и до окончания устройства днища и отключения водопонижения, а в колодцах, погружаемых в тиксотропных рубашках, - до завершения работ по тампонажу полости тиксотропной рубашки.

При эксплуатации башенных кранов на рельсовом ходу, используемых при опускании кессонов, ежедневно должна производиться нивелировка рельсовых путей с соответствующей рихтовкой.

Для уменьшения и равномерной передачи на поверхность грунта давления от первого яруса опускного кессона до начала работ по его бетонированию (монтажу) под ножевую часть сооружения должно быть подготовлено специальное временное основание в виде песчано-щебеночных призм, деревянных или железобетонных подкладок, бетонных или железобетонных монолитных или сборных колец или других опорных конструкций.

При опускании кессонов схема воздухопроводов должна обеспечивать возможность подключения в сеть или отключения от сети каждого компрессорного агрегата.

На компрессорной станции должен быть предусмотрен резервный компрессор, производительность которого должна быть равна или больше самого мощного из работающих. Резервный компрессор в период выполнения кессонных работ должен постоянно находиться в состоянии , готовом для немедленного пуска и подключения в сеть.

Компрессорная станция должна иметь питание от двух независимых источников электроэнергии.

Сжатый воздух должен поступать из коллектора компрессорной станции в наружный воздуховод не менее чем через два последовательно поставленных воздухосборника, общий объем которых определяется в зависимости от количества всасываемого компрессорами воздуха, согласно табл.2.1.
Таблица 2.1


N п.п.

Количество всасываемого воздуха, м/мин

Минимальный объем воздухосборников, м

1

5

3

2

10

5

3

20

7

4

30

9

5

50

11

6

70

13

7

90

15

8

100

16

9

120

18

10

140

19

11

160

20

12

180

21

13

200

22

14

220

23

15

240

24

16

250

25

Наружный воздухопровод следует укладывать не меньше, чем в две нитки и защищать от воздействия наружной температуры. Воздухоподающие трубы должны быть равномерно распределены по площади кессона. Число воздухоподающих труб, идущих от сборного воздухопровода к кессону, назначается из расчета одной трубы на 100 мплощади кессона в плане, но должно быть не менее двух.

Воздух в шлюзовые аппараты следует подавать по отдельным трубам.

Число и размеры сифонных труб для обмена воздуха и удаления его излишков следует определять из условия, чтобы их площадь сечения составляла не менее 20% суммарной площади воздухоподающих труб (но не менее двух сифонных труб).

При опускании кессона потребность в сжатом воздухе увеличивается, поэтому типы и число компрессоров на компрессорной станции необходимо подбирать так, чтобы питание кессона сжатым воздухом было равномерно возрастающим - от минимума, соответствующего начальному периоду опускания, до максимума, соответствующего проектному положению кессона.

В связи с этим комплект компрессоров на компрессорной станции подбирается из компрессоров различной производительности.

В то же время производительность самого мощного компрессора должна быть не более 50% общей производительности компрессорной станции.

Количество сжатого воздуха, подаваемого в кессон, должно обеспечивать воздушное давление, при котором создаются оптимальные условия для производства работ. На каждого работающего в кессоне следует подавать не менее 25 м сжатого воздуха в 1 ч.

Температура воздуха в рабочей камере при давлении до 0,2 МПа должна быть 16-20 °С, до 0,25 МПа - 17-23 °С, выше 0,25 МПа - 18-26 °С.

Воздушное давление в кессонах, погружаемых без применения гидромеханизации, должно быть достаточным, чтобы исключить приток воды из-под ножа, но не превышать больше чем на 0,02 МПа гидростатическое давление на уровне ножа.

Количество и давление сжатого воздуха, подаваемого в камеру кессона, должно обеспечивать:

а) обмен воздуха в опускаемом кессоне, отвечающий требованиям действующих правил безопасности производства кессонных работ;

б) возможность осуществления в кессоне оптимального режима воздушного давления, соответствующего принятому методу разработки грунта при опускании кессона до проектной отметки;

в) условия, исключающие возможность наплыва грунта вследствие понижения давления воздуха при гидромеханической разработке грунтов.

Расчетное количество воздуха, необходимое по правилам безопасности при кесонных работах, должно составлять , где - количество сжатого воздуха, подаваемого компрессором, м/ч; - полная численность людей, занятых на работе в рабочей камере и шлюзовом аппарате.

Расчетное количество воздуха, необходимое для опускания кессона по производственным требованиям, следует определять по формуле

, (3)

где - количество сжатого воздуха, подаваемого компрессором, м/ч; - суммарная внутренняя поверхность стен и потолка кессона, м; - периметр кессона, м; - часовая потеря воздуха, приходящаяся на 1 м периметра ножа и принимаемая для плотных и мягких грунтов 1-3 м/ч и для скальных грунтов 4-6 м/ч; - часовая потеря воздуха через 1 м стен и потолка, принимаемая равной от 0,67 до 0,35 м/ч в зависимости от плотности бетона (0,35 м/ч - при торкретированной поверхности); - коэффициент, учитывающий расход воздуха на шлюзование грунта и в среднем принимаемый равным 1,25, при применении гидромеханизации в кессоне 1.

Для подбора производительности компрессорной станции в формулы следует ввести множитель .

Расчетное избыточное воздушное давление в камере кессона , МПа, следует принимать:

а) при разработке грунта без применения гидромеханизации ;

б) при разработке грунта с применением гидромеханизации ,

где - гидростатический напор, м, водяного столба на уровне ножа кессона; - допускаемая разность гидростатического и воздушного давления, МПа, зависящая от физических свойств грунтов, окружающих кессон.

Принимают следующие наименьшие значения величины , МПа:


Для песчаных грунтов

0,01

Для супесей

0,02

Для суглинков

0,03

Для глин

0,04

Наибольшая величина допускаемой разности давлений должна уточняться опытным путем в процессе опускания кессона , причем при правильно назначенной величине должны исключаться наплыв грунта и приток фильтрующейся воды, при котором невозможно обеспечить баланс пульпы в зумпфе.

Для предотвращения резких посадок кессонов при проходке слабых грунтов необходимо вследствие недостаточности сил бокового трения погружать их с применением шпальных клеток или же клеток из других материалов.

При опускании кессонов на шпальные клетки в проекте производства работ предусматривается последовательность их перестановки по мере разработки грунта между форсированными зонами. Пример размещения клеток и последовательность их перестановки приведены на рис.3.

Рис.3. Последовательность перестановки шпальных клеток

1 - первоначальное положение клеток; 2 - последующее положение клеток

Когда кессон опущен на большую глубину, силы трения, развивающиеся между его боковой поверхностью и грунтом, могут стать настолько большими, что действия собственного веса кессона для погружения его в грунт будет недостаточно. В этом случае прибегают к так называемым форсированным посадкам кессона. Сущность форсированных посадок кессона состоит в том, что выкопав траншею по периметру кесонной камеры и удалив грунт из-под ножевой части, снижают давление воздуха в кессоне. Вследствие уменьшения давления воздуха на потолок кессонной камеры сопротивление погружению в грунт значительно уменьшается, и кессон быстро опускается на глубину выработки грунта. Форсированные посадки кессона разрешается производить на глубину не более 0,5 м при снижении воздушного давления не больше чем на 50%.

Так как при форсированных посадках не исключена возможность наплыва грунта в кессонную камеру, то их нельзя допускать в тех случаях, когда в пределах призмы обрушения грунта имеются сооружения.

В этих условиях, чтобы облегчить погружение кессона, зажатого силами трения, следует применять другие способы, например, дополнительную пригрузку его.

Подборка грунта под банкеткой перед форсированной посадкой на глубину больше чем 0,5 м запрещается.

Разработку грунта в камере кессона, как правило, для всех грунтов ведут в два приема : сначала выбирают грунт в средней части камеры, не трогая участков, расположенных под консолями, и только после этого, удалив грунт из-под консолей, сажают кессон. Таким образом, опускание кессона происходит не непрерывно, а отдельными ступенями.

Разработка грунта на первых метрах погружения кессона производится в такой последовательности: грунт снимают ровными слоями по всей площади кессона до уровня банкетки, берму шириной около 0,5 м оставляют у консолей (рис.4). После того как грунт в средней части кессона будет выбран вровень с банкеткой, разрабатывается оставленная берма. Разработка бермы производится от середины продольных сторон к углам и одновременно от углов (или фиксированных зон) к середине коротких сторон (рис.5). По мере разработки бермы кессон постепенно садится. После того как берма будет удалена вровень с поверхностью грунта, на остальной площади кессона возобновляется выборка грунта в средней части кессона, и описанные выше операции повторяются.

Рис.4. Схема бермы у консоли кессона при разработке грунта

Рис.5. Схема удаления берм у консоли кессона

1 - шахтная труба

При опускании кессона в полускальных и скальных породах в результате соприкосновения наружных поверхностей стен кессона с поверхностью скалы кессон может быть зажат. Чтобы избежать этого, необходимо при разработке грунта под ножевой частью захватывать и грунт, находящийся вне кессонной камеры на расстоянии 10-15 см от наружной поверхности ножевой части.

Разработку слабых, несвязных грунтов следует вести в центральных частях кессонной камеры, тогда под тяжестью кессона грунт от ножевой части будет сползать к центральным выработкам, а вследствие этого кессон по мере разработки грунта будет постепенно опускаться.

Затопление камеры кессона (в случае вынужденного перерыва в производстве работ) должно производиться постепенным понижением воздушного давления. Вытеснение воды из затопленной камеры должно производиться под давлением, не превышающим проектное.

Камеры кессона должны заполняться материалом, предусмотренным в проекте, с плотной подбивкой материала под потолок кессона. Оставшиеся пустоты должны быть заполнены цементно-песчаным раствором нагнетанием его через закладные трубки под давлением не менее 0,1 МПа.

Посадка потолка кессона непосредственно на грунт допускается только по решению проектной организации.

Затопление кессонов, оборудованных гидромеханизированными установками, должно производиться подачей воды в рабочую камеру с одновременным постепенным снижением давления воздуха. Обратное удаление воды из кессона должно осуществляться вытеснением ее сжатым воздухом и одновременной откачкой гидроэлеватором.

Заполнение рабочей камеры кессона бетонной смесью, бутобетоном или песком должно производиться в строгом соответствии с проектом производства работ. Бетон, применяемый для заполнения камер, должен обладать достаточной пластичностью. Заполнение камеры начинается с укладки по всей площади кессона слоя песка или бетона такой толщины, чтобы оставшаяся высота рабочей камеры допускала вполне удобное производство работ по дальнейшей забутовке. Толщина предварительно укладываемого слоя принимается равной около 0,5 м.

Вначале производят подбивку под скошенную часть консоли, затем заполняют среднюю часть площади кессона. Укладку заполнителя все время ведут симметрично относительно продольной и поперечной осей кессона. Принятая в проекте последовательность заполнения камеры кессона бетоном или песком должна обеспечивать равномерную его укладку, в первую очередь, вдоль консолей, а затем из центра камеры к внешней линии монорельса.

Помимо заполнения камеры кессона бетоном, бутобетоном, песком в некоторых случаях в целях экономии может применяться заполнение камеры кессона местными грунтовыми материалами (глинами, суглинками).

3. ТРЕБОВАНИЯ К КАЧЕСТВУ ВЫПОЛНЕНИЯ РАБОТ

ПРИЕМКА РАБОТ

В процессе возведения и опускания кессонов приемке подлежат:

закрепленные в натуре геодезическими знаками основные оси сооружений;

искусственные островки, площадки и временное основание под нож;

арматура, закладные части и детали;

стыки и швы между элементами сборных конструкций;

сооружения, подготовленные к снятию с временных оснований и опусканию (спуску на воду);

установка наплавных кессонов на дно;

заполнение пазух колодца, погруженного в тиксотропной рубашке (тампонаж полости тиксотропной рубашки).

В процессе работ по возведению и опусканию кессонов надлежит вести журналы работ по опусканию кессона.

В ходе строительства инженерно-технические работники обязаны оформлять исполнительные документы - журналы производства работ, бетонных работ, опускания сооружений, температурный журнал и др.

Все журналы должны быть пронумерованы, прошиты и скреплены печатью; не реже одного раза в месяц они должны проверяться руководством строительных организаций. По окончании работ на участке последнюю запись в каждом журнале делает начальник участка, который подписывает журнал на титульном листе.

Акты на скрытые работы должны составляться на все конструктивные элементы и работы, скрытые в процессе последующего производства, например гидроизоляция, арматура, омоноличиваемые стыки сборных железобетонных элементов, закладные части и др.

Приемка скрытых работ раньше достижения применяемыми материалами проектной прочности допускается при условии отбора и испытания образцов (после твердения).

Акты на скрытые работы должны составляться в трех экземплярах: один передается представителю технадзора, два других хранятся в строительной организации (один из них при сдаче работ прилагается к акту сдачи).

Исполнительные чертежи подписываются геодезистом, руководителем объекта и представителем заказчика.

Строительная организация, выполнившая работы не по объекту в целом, а только по отдельному виду работ или части сооружения (опускной колодец, кессон), должна сдавать эти работы генподрядной организации (в присутствии представителя заказчика) под монтаж и для дальнейшего производства работ по акту.

При сдаче законченных работ на объекте строительная организация в любом случае должна предъявить следующие документы:

перечень и краткую техническую характеристику подлежащих сдаче сооружений;

комплект рабочих чертежей, соответствующих выполненным работам или с внесенными в них изменениями , если последние имели место в процессе строительства, с подписью лиц, ответственных за строительство;

акты промежуточной приемки ответственных конструкций и акты на все работы, скрываемые последующими работами и конструкциями (скрытые работы);

акты испытания установленного оборудования;

документы, характеризующие качество использованных материалов (сертификаты, акты и паспорта на испытание материалов и т.д.);

документы, характеризующие качество выполненных работ (результаты испытания сварных стыков, арматуры, образцов бетона и др.);

журналы работ;

акты геодезической разбивки основных осей сооружений, а также ведомости реперов и осевых знаков.

Вся документация в одном экземпляре после окончания работы рабочей комиссии передается заказчику.

4. МАТЕРИАЛЬНО-ТЕХНИЧЕСКИЕ РЕСУРСЫ

Установка БСО-1 обеспечивает изготовление опор глубиной до 70 м и диаметром 820-1220 мм при скорости проходки скважин до 6 м/ч.

Буровая установка СО-1200/2000 служит для устройства буровых опор длиной до 24 м и диаметром 800-1500 м с уширением основания до трех диаметров ствола сваи. У этой установки днище бурового ковша укреплено на шарнире и в закрытом положении фиксируется защелкой. На днище бурового ковша смонтированы ножи для разрушения грунта в забое скважины. Разбуренный грунт поступает в окна забора днища.

Буровая установка УРП-1 предназначена для устройства опор длиной до 37 м и диаметром до 1400 мм с уширением основания. В качестве базовой машины используют кран МКГ-25 или экскаватор Э-1254. Рабочим органом является ковшовый бур. При устройстве уширения ковшовый бур заменяют буровым расширителем циклического действия.

Буровая установка МБС-1,7 может быть использована для устройства буровых опор глубиной до 28 м, диаметром ствола 1,3 и 1,7 м и диаметром уширения до 3,5 м в любых грунтовых условиях с креплением стенок скважин глинистым раствором. В качестве базовой машины используется кран-экскаватор Э-1258Б, оснащенный консольной площадкой с ротором-вращателем. Сквозь него проходит телескопическая квадратная штанга с укрепленным на ней рабочим органом (буровыми ковшами, шнеками и уширителями). Установка оснащена дополнительной стрелой, которая используется для ударного бурения грейфером или долотом. Основной отличительной особенностью установки является возможность принудительной подачи рабочего органа на забой, а также быстро переходить с одного вида бурения на другой.

Установки ЕДФ-55 французской фирмы "Беното" позволяют делать буровые опоры диаметром до 2100 мм и глубиной до 120 м в сложных грунтовых условиях. Скорость проходки скважин до 6 м/ч. Оборудование позволяет выполнять все операции по устройству буровых опор. Проходку скважины ударным бурением ведут с помощью грейфера "Хаммер-Граб". Особенностью разработки скважин стенками "Беното" является оригинальный способ обуривания забоя обсадной трубой, которая внедряется в забой, совершая возвратно-вращательные движения и одновременно поступательное движение на забой.

Водонасыщенные пески и ил разрабатывают желонкой.

Уширение разбуривают расширителем "Сегби", ножи которого раскрываются с помощью гидропривода. Грунт извлекается из скважины при сомкнутых режущих ножах. По окончании бурения дно скважины очищают от грунта грейфером. Бетонирование свай выполняют методом ВПТ или контейнерным способом.

В Японии получили широкое распространение фундаменты в виде мощных бетонных опор глубокого заложения с большой несущей способностью, сооружаемых с помощью специальных станков. Диаметр опор достигает 2-3,5 м. Наиболее часто бетонные опоры выполняют машинами, выпускаемыми фирмой "Като". Установки 20-ТН фирмы "Като" при скорости проходки грейфером 3-5 м/ч и ротором до 18 м/ч обеспечивают получение опор диаметром до 1200 мм, глубиной до 27 м.

5. ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ И ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ

Все рабочие, ИТР, принимающие участие в возведении и опускании кессонов, перед началом работ должны пройти обучение по безопасным способам производства работ применительно к конкретной строительной площадке и соответствующим специальностям.

Для обеспечения безопасности работ при устройстве глубоких буровых опор и фундаментов из тонкостенных железобетонных оболочек должны соблюдаться правила и требования, установленные для ведения буровых и свайных работ, а также общие правила техники безопасности, предусмотренные СНиПом.

При возведении и опускании кессонов следует руководствоваться и выполнять все требования действующих норм безопасности труда на строительстве (СНиП 12-03-2001 и СНиП 12-04-2002) и правил эксплуатации используемого оборудования, механизмов и инструмента. Особое внимание должно быть обращено на возможность подвижек и оползания грунта в пределах их призм обрушения и недопущение расположения в этой зоне действующих механизмов и других средств производства работ.

При возведении стен в грунте вдоль разрабатываемой траншеи следует делать ограждения на расстоянии 3 м с каждой стороны, а переход людей через открытую часть траншеи допускается только по предусмотренным для этой цели мостикам.

Перемещение и установка машин и механизмов вдоль траншеи допускаются лишь на расстоянии, установленном в проекте.

Должны быть подробно указаны способы и схемы отрывки траншей и удаления грунта, строповки и установки арматурных конструкций и сборных элементов, установки бетонолитных труб и процессов бетонирования.

Условия работы в кессоне вредны для здоровья людей . Особенно неблагоприятно влияют на организм и вызывают кессонную болезнь нарушения режима постепенного изменения давления воздуха, т.е. сокращение длительности шлюзования. Рабочие очередной смены, перед тем как опуститься в кессон, помещаются в прикамерок шлюзового аппарата, в который постепенно (в течение 10-20 мин) нагнетается воздух до давления, равного кессонному. Затем рабочие опускаются в кессонную камеру для выполнения работы. В зависимости от величины давления смена длится 2-4 ч. После окончания смены рабочие вновь помещаются в шлюзовый прикамерок и подвергаются длительному "вышлюзовыванию", нарушение режима которого особенно опасно.

Подаваемый в кессон воздух должен быть сухим, прохладным и чистым, для этого применяют воздухосборники, фильтры и очистительные установки.

Количество сжатого воздуха, подаваемого в кессон, должно обеспечивать воздушное давление, при котором создаются оптимальные условия для производства работ. На каждого работающего в кессоне следует подавать сжатого воздуха не менее 25 м/ч.

Температура воздуха в кессонной камере при давлении до 0,2 МПа должна быть 16-20 °С, до 0,25 МПа 17-23 °С, выше 0,25 МПа - 18-26 °С. Обмен воздуха в кессонной камере должен отвечать требованиям техники безопасности производства кессонных работ. При опускании кессонов схема воздухопроводов должна обеспечивать возможность подключения в сеть или отключения от сети каждого компрессорного агрегата.

На компрессорной станции должен быть резервный компрессор производительностью, равной или больше самого мощного из работающих компрессоров . Резервный компрессор в период выполнения работ должен постоянно находиться в готовности для немедленного пуска и подключения в сеть. Компрессорная станция должна иметь питание от двух независимых источников электроэнергии.

Внезапное снижение давления в кессоне может привести к аварии и тяжелым заболеваниям рабочих, поэтому двери и люки необходимо всегда делать открывающимися в сторону большего давления, что исключает случайные потери воздуха.

При опускании кессонов вблизи существующих сооружений за последними должен быть установлен систематический инструментальный контроль. При обнаружении деформаций сооружений необходимо срочно прекратить опускание сооружений и принять меры, предотвращающие развитие опасных деформаций.

6. ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ


ГОСУДАРСТВЕННЫЕ ЭЛЕМЕНТНЫЕ СМЕТНЫЕ НОРМЫ. СВАЙНЫЕ РАБОТЫ

Государственные элементные сметные нормы ГЭСН, предназначены для определения состава и потребности в ресурсах, необходимых для выполнения строительных работ, составления сметных расчетов (смет) ресурсным методом, а также для расчетов за выполненные работы и списания материалов.

ГЭСН являются исходными нормативами для разработки Государственных единичных расценок на строительныеработы федерального (ФЕР) и территориального (ТЕР) уровней, индивидуальных и укрупненных норм (расценок) и других нормативных документов, применяемых для определения прямых затрат в сметной стоимости строительных работ.

ГЭСН отражают среднеотраслевые затраты на принятую технику, технологию и организацию работ по видам работ. В связи с этим ГЭСН могут применяться для определения затрат всеми организациями-заказчиками и подрядными организациями независимо от их организационно-правовых форм и ведомственной принадлежности.

ГЭСН разработаны в составе следующих сборников:

СПИСОК ЛИТЕРАТУРЫ

СНиП 3.03.01-87. Несущие и ограждающие конструкции.

СНиП 12-03-2001 Безопасность труда в строительстве. Ч.1. Общие требования.

СНиП 12-04-2002. Безопасность труда в строительстве. Ч.2. Строительное производство.

ГОСТ 12.1.044-89. ССБТ. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения.

ГОСТ 12.2.003-91. ССБТ. Оборудование производственное. Общие требования безопасности.

ГОСТ 12.3.009-76. ССБТ. Работы погрузочно-разгрузочные. Общие требования безопасности.

ГОСТ 12.3.033-84. ССБТ. Строительные машины. Общие требования безопасности при эксплуатации.

ГОСТ 24258-88. Средства подмащивания. Общие технические условия.

ППБ 01-03. Правила пожарной безопасности в Российской Федерации.

Электронный текст документа подготовлен ЗАО "Кодекс"
и сверен по авторскому материалу.
Автор: Демьянов А.А. - к.т.н., преподаватель
Военного инженерно-технического университета,
Санкт-Петербург, 2009

В сильно обводненных грунтах, содержащих прослойки скальных пород или твердых включений (валуны, погребенную древесину и т.д.) погружение опускных колодцев по схеме «насухо» требует больших затрат на водоотлив, а разработка грунта под водой невозможна из-за наличия в грунте твердых включений.

В этом случае используется кессонный метод устройства фундаментов глубокого заложения, который был предложен во Франции в середине 19в.

Кессон схематически представляет собой опрокинутый вверх днищем ящик, образующий рабочую камеру, в которую под давлением нагнетается сжатый воздух, уравновешивающий давление грунтовой воды на данной глубине, что не позволяет ей проникать в рабочую камеру, благодаря чему разработка грунта ведется насухо без водоотлива.

Метод является более дорогостоящим и сложным, поскольку требует специального оборудования. Кроме того, этот способ связан с пребыванием людей в зоне повышенного давления воздуха, что значительно сокращает продолжительность рабочих смен (до 2 часов при 350…400кПа(max)) при максимальной глубине 35-40м.

В связи с вышесказанным кессоны применяют значительно реже других типов фундаментов глубокого заложения.

Кессонная камера, высота которой по санитарным нормам принимается не менее 2,2 м, выполняется из ж/б и состоит из потолка и стен, называемых консолями.

Способ погружения кессона аналогичен опускному колодцу. Глубину погружения кессона и его внешние размеры определяют так же, как и для опускных колодцев.

Шлюзовой аппарат, соединенный с кессонной камерой шахтными трубами, предназначен для шлюзования людей и грузов при их спуске в кессонную камеру и при подъеме из нее.

Рабочий процесс . Рабочий входит в прикамерок шлюза, где давление постепенно повышается до имеющегося в рабочей камере. На этот процесс затрачивается от 5 до 15 мин., что необходимо для адаптации организма человека, после чего по шахтной трубе рабочий опускается в рабочую камеру кессона. Выход из рабочей камеры кессона осуществляется в обратной последовательности, но при этом на снижение давления воздуха в прикамерке шлюза до уровня атмосферного давления требуется 3-3,5 раза больше времени, чем вначале, т.к. быстрый переход от повышенного давления к атмосферному может быть причиной начала кессонной болезни.

Сжатый воздух в кессонную камеру начинают подавать не сразу, а как только ее нижняя часть при погружении достигнет уровня подземных вод. Давление воздуха, обеспечивающее отжим воды из камеры кессона, определяется из условия:

Где - избыточное (сверх атмосферного) давление воздуха, кПа ;

Гидростатический напор на уровне банкетки ножа, м ;

Удельный вес воды,

После опускания кессона на проектную глубину все специальное оборудование демонтируется, а рабочая камера заполняется бетоном.

Грунт в камере кессона разрабатывается или ручным или гидромеханическим способом.

Имеется опыт разработки грунта в кессонной камере вообще без присутствия в ней рабочих, когда все управление гидромеханизмами выносится за ее пределы. Такой способ опускания кессона называется слепым.

№ 20 ЕМТИХАН БИЛЕТІ/ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ

1. Закрепление грунтов: смолизация, глинизация и битумизация

Смолизация - нагнетание водного раствора карбамидной смолы с добавкой соляной кислоты,щавелевой кислоты или хлористого аммония. Применяется для закрепления, повышения прочности иводонепроницаемости мелкозернистых песчаных грунтов.

Глинизация служит для уменьшения фильтрационной способности трещиноватых скальных,кавернозных пород и гравелистых грунтов. При этом способе в трещины породы нагнетается под большимдавлением глинистая суспензия с добавкой небольшой дозы коагулянта.

битумизация. Её назначение - заделка наиболее крупных каверн, не поддающихсяцементации из-за большой скорости грунтового потока. Нагнетание горячего битума в полости и трещиныкавернозных пород производится через пробуренные скважины, оборудованные инъекторами. При холоднойбитумизации в грунт нагнетают тонкодисперсную битумную эмульсию. Способ применяется для оченьтонких трещин в скальных грунтах и закрепления песчаных грунтов.

Архитектура, проектирование и строительство

При залегании прочных грунтов на значительной глубине когда устройство фундаментов в открытых котлованах становится трудновыполнимым и экономически невыгодным а применение свай не обеспечивает необходимой несущей способности прибегают к устройству фундаментов глубокого заложения. Необходимость устройства фундаментов глубокого заложения может быть вызвана и особенностями самого сооружения например когда оно должно быть опущено на большую глубину заглубленные и подземные сооружения. Одним из видов фундаментов глубокого заложения наряду с...

Задание 25. Кессоны. Условия применения, конструктивная схема, последовательность производства работ.

При залегании прочных грунтов на значительной глубине, когда устройство фундаментов в открытых котлованах становится трудновыполнимым и экономически невыгодным, а применение свай не обеспечивает необходимой несущей способности, прибегают к устройству фундаментов глубокого заложения. Необходимость устройства фундаментов глубокого заложения может быть вызвана и особенностями самого сооружения, например, когда оно должно быть опущено на большую глубину (заглубленные и подземные сооружения). К таким сооружениям относятся подземные гаражи и склады, ёмкости очистных, водопроводных и канализационных сооружений, здания насосных станций и многие другие.

Одним из видов фундаментов глубокого заложения наряду с опускными колодцами, тонкостенными оболочками, буровыми опорами и фундаментами, возводимыми методом "стена в грунте", являются кессоны.

Кессонный метод устройства фундаментов глубокого заложения был предложен для строительства в сильно обводнённых грунтах, содержащих прослойки скальных пород или твёрдые включения (валуны, погребённую древесину и т.д.). В этих условиях устройство фундамента глубокого заложения по схеме "насухо" требует больших затрат на водоотлив, а разработка грунта под водой невозможна из-за наличия в грунте твёрдых включений.

Кессон схематически представляет собой опрокинутый вверх днищем ящик, образующий рабочую камеру, в которую под давлением нагнетается сжатый воздух, уравновешивающий давление грунтовой воды на данной глубине, что не позволяет ей проникать в рабочую камеру, благодаря чему разработка грунта ведётся насухо без водоотлива.

Кессон состоит из двух основных частей: кессонной камеры и надкессонного строения (рис.1).

Кессонная камера выполняется из железобетона и состоит из потолка и стен, называемых консолями. Консоли камеры с внутренней стороны имеют наклон и заканчиваются ножом. Толщина консолей в месте примыкания к потолку составляет 1,5...2 м. При бетонировании кессонной камеры в её потолке оставляют отверстие для установки шахтной трубы, труб сжатого воздуха и воды, а также подводки электроэнергии.

Надкессонное строение в зависимости от назначения кессона выполняется либо как колодец с железобетонными стенками (под заглубленное помещение), либо в виде сплошного массива из монолитного бетона или железобетона (для фундаментов глубокого заложения).

Главными элементами оборудования для опускания кессонов являются шлюзовые аппараты, шахтные трубы и компрессорная станция.

Шлюзовой аппарат, соединённый с кессонной камерой шахтными трубами, предназначен для шлюзования людей и грузов при их спуске в кессонную камеру и при подъёме из неё.

Последовательность производства работ при строительстве кессонов следующая.

Сначала на спланированной поверхности грунта возводится кессонная камера, на которой монтируются шлюзовой аппарат и шахтные трубы. Одновременно вблизи кессона сооружается компрессорная станция и монтируется оборудование для подачи в кессон сжатого воздуха.

После того как бетон кессонной камеры приобретёт проектную прочность, её снимают с подкладок и начинают погружение. Сжатый воздух начинают подавать в кессонную камеру, как только её нижняя часть достигнет уровня подземных вод. Давление воздуха, обеспечивающее отжим воды из камеры кессона, определяется из условия:

p в ≥Н w γ w

где p в - избыточное (сверх атмосферного) давление воздуха;

Н w -гидростатический напор на уровне банкетки ножа;

γ w - удельный вес воды.

По мере погружения кессона в грунт наращивают шахтные трубы, если это необходимо, и возводят надкессонную часть сооружения.

После опускания кессона на проектную отметку всё специальное оборудование демонтируется, а рабочая камера заполняется бетоном.


А также другие работы, которые могут Вас заинтересовать

55057. Зображення постаті людини. Образ літературного героя 815.5 KB
Мета уроку: Сформувати уявлення про пропорції постаті людини; навчити учнів аналізувати та в залежності від віку зображати фігуру людини. Обладнання уроку: музичні...
55058. Посвящение в первоклассники 54 KB
Донецк Посвящение в первоклассники Первоклассники торжественно заходят в зал под мелодию Школьный корабль Ведущий 1. Наши первоклассники Ведущий 1. Позвольте праздник Посвящение в первоклассники считать открытым Ведущий 2. Дорогие первоклассники Чуть больше месяца назад вы пришли в нашу школу не зная её правил и законов.
55059. Посвята в старшокласники 87 KB
Шановні радіослухачі У звязку з проведенням традиційного свята Посвята в старшокласники до нас прибув почесний гість сам Папа Римський Бенедикт Шістнадцятий. На сцені зявляються Папа Римський і перекладач. Папа Римський. Доброго дня шановні пані та панове Папа римський.
55060. Природно – ресурсний потенціал Полтавської області 55 KB
Анотація: Розробка уроку для 9 класу, мета якого – визначити особливості географічного положення Полтавської області; розвивати знання про природно – ресурсний потенціал регіону; закріпити вміння і навички працювати з картою і розв’язувати задачі; розвивати аналітичне мислення і творчий підхід до засвоєння матеріалу.
55061. Bасиль Королів-Старий «Потороча хрипка». Що значить бути доброю людиною? 82.5 KB
Подивилася на нього ще зблизька побачила який вiн наскрiзь мокрий як вiн увесь тремтить iз холоду й нарештi наскiльки вистачило у неї голосу ласкаво промовила: Любий хлопчику Не бiйся мене й скажи чого ти тут шукаєш. Й вiн заридав. Давно вже вiн не чув щоб хтось озвався до нього ласкавим словом. Вiн ще трохи похлипав й почав розповiдати.
55062. Совершенствование техники выполнения ранее изученных элементов баскетбола 63.5 KB
Задачи урока: Образовательная ведение мяча по кругу; ведение мяча с изменением направления; передача мяча в парах в движении; ведение мяча два шага бросок в кольцо;...
55063. Як досягти поваги в колективі 44 KB
3 група філологи добирають вислови видатних людей про дружбу і колективізм. Повідомлення теми уроку Тема нашого уроку: Як досягти поваги в колективі. Культурна людина бажана в будь якому колективі.
55064. Поведінка учня. Безпека школяра. Правила поведінки учня під час шкільних масових заходів 81 KB
Що таке звичка ввічливої поведінки Яка це звичка Які інші корисні звички для зміцнення здоровя вам відомі Чому ви самі поважаєте себе якщо можете самостійно виховати в собі корисні риси Згадайте свої маленькі перемоги над собою. Як ви допомагаєте виробити корисні звички друзям Як ви спілкуєтесь зі своїми...
55065. Програма Power Point на уроках української мови та літератури як засіб формування інноваційної особистості 6.61 MB
І тут на допомогу приходить візуалізація за допомогою компютерної презентації. Застосування цієї програми дає можливість учителеві та учням складати презентації для організації інформаційної підтримки під час підготовки й проведення уроківє унікальною можливістю демонстрації пропонованого матеріалу...

Фундамент глубокого заложения, выполненный в виде ящика без дна, опускаемого в грунт под действием собственного веса, оборудованного устройством для нагнетания сжатого воздуха в рабочую камеру кессона, что предотвращает поступление в нее воды и позволяет рабочим производить выборку грунта.

Источник: Справочник дорожных терминов

"Фундамент кессонный" в книгах

Фундамент

автора Сергеев Борис Федорович

Фундамент

Из книги Метаэкология автора

Фундамент

Из книги Ступени эволюции интеллекта автора Сергеев Борис Федорович

Фундамент Немного истории Человек – венец эволюции животного царства на нашей планете – на всем протяжении своей длинной истории жил в тесном единстве с природой, в постоянном общении с ее обитателями и в известной от них зависимости. Лишь в XX в. появилось поколение

Фундамент

Из книги Метаэкология автора Красилов Валентин Абрамович

Фундамент Любая развивающаяся система имеет цель - некое предсказуемое состояние, к которому она стремится, подчиняясь общим законам развития. Достижение цели - например, возобновление вида - гарантируется генетическим механизмом, точность работы которого

Фундамент

Из книги Ремонт своими руками. Из старого дома – современный коттедж автора Ойд Вольфганг

Фундамент Фундамент – это основа дома, его опора. При разрушении фундамента возникает множество проблем, деформируются и трескаются стены. Если разрушения сильны, то стена может вообще обрушиться. При осмотре старого дома обращайте внимание на состояние

Фундамент

Из книги Отопление и водоснабжение загородного дома автора Смирнова Людмила Николаевна

Фундамент Этот конструктивный элемент служит основанием для печи и принимает на себя вес печи и дымоходов. От того, насколько правильно построен фундамент, как высока его надежность, зависит безопасность эксплуатации печного оборудования. Результатом любых просадок

Фундамент

Из книги Благоустройство территории вокруг коттеджа автора Казаков Юрий Николаевич

Фундамент Перед закладкой фундамента проводится геологическое исследование почвы, по результатам которого определяются его тип, а также желательный размер и материалы постройки, в нашем случае – бани.Самый простой фундамент – камни, уложенные на землю и присыпанные

1. Фундамент

Из книги Каир. Биография города автора Олдридж Джеймс

1. Фундамент Европейцу сейчас, пожалуй, легче восстановить картину зарождения Каира, чем египтянину, ибо в его истории слишком много неегипетских влияний. До 1952 года город строил кто угодно, только не египтяне. Современные кварталы Каира явно европейские, но и старый

Кессонный деревянный потолок

Из книги Современные потолки своими руками автора Захарченко Владимир Васильевич

Кессонный деревянный потолок Кессонный потолок состоит из кассет (кессонов). Они образованы балками, которые располагаются во взаимно перпендикулярном направлении и составляют квадратные или многоугольные ячейки (рис. 75). Балки при этом имеют рельефную поверхность,

Фундамент

Из книги Большая Советская Энциклопедия (ФУ) автора БСЭ

Фундамент

Из книги Советы по строительству бани автора Хацкевич Ю Г

Фундамент В качестве фундамента для бревенчатых саун обычно используются бетонные или кирпичные столбы. Их размещают под каждым углом здания, а при больших площадях - и вдоль стен: на расстоянии 2 м друг от друга. На столбы кладут лаги. Такая конструкция обеспечит

RSA как фундамент ЭЦП

Из книги Защити свой компьютер на 100% от вирусов и хакеров автора Бойцев Олег Михайлович

RSA как фундамент ЭЦП Не секрет, что наибольшую популярность среди криптоалгоритмов цифровой подписи приобрела RSA (применяется при создании цифровых подписей с восстановлением документа).На начало 2001 года криптосистема RSA являлась наиболее широко используемой

Фундамент

Из книги Куры мясных пород автора Балашов Иван Евгеньевич

Фундамент Возведение курятника, как и строительство дома, начинается с фундамента. В зависимости от типа почвы, а также материальных возможностей фермера он может быть столбчатым или ленточным. Также вы вправе сделать фундамент из кирпичей или асбестоцементных труб. В

Фундамент

Из книги Овладейте силой внушения! Добивайтесь всего, чего хотите! автора Смит Свен

Фундамент Для чего нужен фундамент? Если вы планируете возвести легкую палатку, вам достаточно найти место поровнее и проследить, чтобы на него не залилась вода во время дождя. Если же вы собираетесь построить настоящий дом, который простоит многие годы и защитит ваше

Фундамент

Из книги автора

Фундамент Строительство любого здания начинается с закладки фундамента, т. е. основания, на котором держится все сооружение. Существует четыре вида фундамента: столбчатые, ленточные, сплошные, свайные. Бывают монолитные и сборные. Они могут возводиться из различного

Образующий рабочую камеру, в которую под давлением нагнетается сжатый воздух, уравновешивающий давление грунтовой воды на данной глубине, что не позволяет ей проникать в рабочую камеру, благодаря чему разработка грунта ведется насухо без водоотлива.

Кессон – «перевернутый ящик» - используется при постройки на местности покрытой водой.

Над кессонная кладка

Рабочая камера

Водолазный колокол

Рис.13.9. Схема устройства кессона:

а – для заглубленного помещения; б – для глубокого фундамента; 1 – кессонная камера; 2 – гидроизоляция; 3 – надкессонное строение; 4 – шлюзовой аппарат; 5 – шахтная труба
Метод является более дорогостоящим и сложным, поскольку требует специального оборудования. Кроме того, этот способ связан с пребыванием людей в зоне повышенного давления воздуха, что значительно сокращает продолжительность рабочих смен (до 2 часов при 350…400кПа(max)) при максимальной глубине 35-40м.

В связи с вышесказанным кессоны применяют значительно реже других типов фундаментов глубокого заложения.

Кессонная камера, высота которой по санитарным нормам принимается не менее 2,2 м, выполняется из ж/б и состоит из потолка и стен, называемых консолями.

Время пребывания рабочих в кессоне ограничено 2…6 часами в зависимости от величины избыточного давления. На каждого рабочего в кессоне должно подаваться не менее 25 м 3 сжатого воздуха в час.

Расчетная схема кессона

q – масса над кессонной кладки;

Р – давление внутри кессона;

Rв – вертикальная реакция под ножом;

Rн – наклонная реакция под ножом;

Eа – активное давление грунта.

Способ погружения кессона аналогичен опускному колодцу. Глубину погружения кессона и его внешние размеры определяют так же, как и для опускных колодцев.

Где - избыточное (сверх атмосферного) давление воздуха, кПа ;

Гидростатический напор на уровне банкетки ножа, м ;

Удельный вес воды,

После опускания кессона на проектную глубину все специальное оборудование демонтируется, а рабочая камера заполняется бетоном.

Грунт в камере кессона разрабатывается или ручным или гидромеханическим способом.

Имеется опыт разработки грунта в кессонной камере вообще без присутствия в ней рабочих, когда все управление гидромеханизмами выносится за ее пределы. Такой способ опускания кессона называется слепым.

Расчет кессонной камеры производится на отдельных этапах:


  1. Кессонная камера с некоторой частью над кессонного строения оперта на подкладки, оставленные в фиксированных точках.

  2. Кессонная камера опущена на проектную глубину; давление воздуха в кессоне, вследствие его форсированной посадки, равно 50 % от расчетной величины для данной глубины опускания.

  3. То же, но давление воздуха равно расчетному.

  4. То же положение, но ножевая часть очищена от грунта.

23. Устройство подземных сооружений методом «стена в грунте». Основные понятия о способах производства работ и расчете.

4.5 Стена в грунте

Этот способ предназначен для устройства фундаментов и заглубленных в грунт сооружений (рис. 13.13).

Рис.13.13. Конструкции, сооружаемые способом «стена в грунте»: а – котлованы в городских условиях; б – подпорные стенки; в – тоннели; г – противофильтрационные диафрагмы; д – подземные резервуары
Способ заключается в том, что сначала по контуру будущего сооружения в грунте отрывается узкая глубокая траншея (b=60…100 см, H≤40…50 м) с помощью жесткого грейфера или механизированного траншеекопателя на проектную глубину с врезкой в водоупор, которая затем заполняется бетонной смесью или сборными железобетонными элементами.

Возведенная таким образом стена может служить конструктивным элементом фундамента, ограждением котлована или стеной заглубленного помещения.

Помимо заглубленных сооружений способом «стена в грунте» можно устраивать противофильтрационные завесы. Устройство «стены в грунте» наиболее целесообразно в водонасыщенных грунтах при высоком уровне подземных вод. Способ особенно эффективен при заглублении стен в водоупорные грунты, что позволяет полностью отказаться от водоотлива или глубинного водопонижения.

Существенным достоинством способа является возможность устройства глубоких котлованов и заглубленных помещений вблизи существующих зданий и сооружений без нарушения их устойчивости, что особенно важно при строительстве в стесненных условиях, а также при реконструкции сооружений.

Технология устройства «стены в грунте» .


  1. Сооружение «стена в грунте» начинается с устройства сборной или монолитной форшахты, которая служит направляющей для землеройных машин, опорой для подвешивания армокаркасов, бетолитных труб, сборных железобетонных панелей и т.п. и обеспечивает устойчивость стенок в верхней части.

  2. Отрывка котлована отдельными захватками. Откопав первую захватку , на всю глубину стены по ее торцам устраивают ограничители, арматурный каркас и укладывают бетонную смесь.

  3. Затем переходят к захватке «через одну», а после ее устройства – к промежуточной и т.д., в результате получается сплошная стена (рис. 13.14).
h

Глиняный раствор

Форд шахта


Рис.13.14. Последовательность возведения «стены в грунте»:

а – первая очередь работ; б – вторая очередь работ; 1 – форшахта; 2 – базовых механизм; 3 – бетонолитная труба; 4 – глинистый раствор; 5 – грейфер; 6 – траншея под одну захватку; 7 – арматурный каркас; 8 – бетонная смесь; 9 – забетонированная секция; 10 – готовая «стена в грунте»

Такой метод называется методом последовательных захваток или секционным методом .

Для удержания стен захватки против обрушения по мере углубления в нее подливают тиксотропный глинистый раствор .

Для приготовления глинистых растворов используют бентонитовые глины (глина, содержащая большой процент монтмориллонита). Глинистые частицы раствора не только смачиваются водой, но вода проникает внутрь кристалла и глина разбухает, значительно увеличиваясь в объеме. Монтмориллонитовая глина обладает свойством тиксотропии , т.е. при динамическом воздействии – это раствор, а при отсутствии воздействия через 4…6 часов золь превращается в гель , что позволяет удерживать стенки траншеи.

После возведения «стены в грунте» по всему периметру сооружения (т.е. конструкция замыкает в плане будущее сооружение) поэтапно удаляют грунт из внутреннего пространства. При необходимости на каждом этапе по периметру устраивают грунтовые анкера или распорки. Если крепления не изготавливаются, то устойчивость стены при удалении грунта обеспечивается ее заделкой в основание. После полного удаления грунта из внутреннего пространства до проектной отметки возводят внутренние конструкции.
24. Классификация методов искусственного улучшения оснований. Механические методы улучшения грунтов оснований.
Методы уплотнения грунтов подразделяют на:

- поверхностные , когда уплотняющие воздействия прикладываются на поверхности и приводят к уплотнению сравнительно небольшой толщи грунтов

- глубинные , когда уплотняющие воздействия передаются значительные по глубине участки грунтового массива.

Поверхностное уплотнение производится


  • укаткой;

  • трамбовкой;

  • вибрационными механизмами (виброуплотнением)

  • подводными взрывами;

  • вытрамбовыванием котлованов.
→ К методам глубинного уплотнения относят

  • устройство песчаных, грунтовых и известковых свай

  • глубинное виброуплотнение

  • уплотнение статической пригрузкой в сочетании с устройством вертикального дренажа

  • водопонижение

  • глубинные(камуфлетные взрывы зарядов ВВ или электровзрывы)
Любые уплотнение можно производить только до определенного предела (до отказа), после достижения которого дальнейшее воздействие не производят к заметному уплотнению

На рис. 12.5 приведены графики иллюстрирующие процесс уплотнения грунта при цилиндрических уплотняющих воздействиях (укатке, трамбовке)

Уплотняемость грунтов, в значительной степени зависит от их влажности и определяется максимальной плотностью скелета уплотняемого грунта и относительной влажностью W опт
25. Уплотнение грунтов поверхностным трамбованием, глубинным

вибрированием, грунтовыми сваями.

3.3.а. Укатка и вибрирование

Уплотнение укаткой производится самоходными и прицепными катками на пневматическом ходу, гружеными скреперами, автомашинами, тракторами. Помимо укатки используют виброкатки и самопередвигающиеся вибромашины. Укаткам можно уплотнить грунты только на очень небольшую глубину, поэтому этот метод в основном применятся при послойном возведении грунтовых подушек, планировочных насыпей, земляных сооружений, при подсыпке оснований под полы. Уплотнение достигается многократной проходкой уплотняющих механизмов. Влажность грунтов при этом должна соответствовать оптимальной.

За уплотненную зону h с om принимают толщу грунта, в пределах которой плотность скелета грунта ρ d не ниже заданного в проекте или допустимого её минимального значения. Уплотнение оптимальной толщины уплотняемого слоя грунта и числа проходов используемых механизмов производится на основании опытных работ.

3.3.б. Трамбовка

Ручные легкие трамбовки (при ограниченном фронте работ)

Тяжелые трамбовки

Рис . Ручные легкие трамбовки


Масса трамбовки 2…7 т


3…7 м


Зона уплотнения основания до 2…3 м

Рис. 2. Схема поверхностного уплотнения грунта тяжелыми трамбовками

Рис. Тяжелые трамбовки
Тяжелая трамбовка изготавливается из ж/б и имеет в плане форму круга или многоугольника (>8 сторон). Применяется для уплотнения всех видов грунтов в природном залегании (пылевато-глинистых при S r

Рис. 12.7. Схема поверхностного уплотнения грунта тяжелой трамбовкой.

1-уплотняемая полоса; 2-полоса перекрытия; 3-уплотняемая полоса; 4-место стоянки экскаватора; 5-ось проходки экскаватора; 6-трамбовка.

Коэффициент

Диаметр трамбовки

Пески, супеси: =1,8

Суглинки, глины: =1,5

Имеется опыт применения сверхтяжелых трамбовок весом >40т, сбрасываемых с высоты до 40м.

Часто уплотнение производится до определенной степени плотности, выражаемой через коэффициент уплотнения , равный отношению заданного или фактически полученного значения плотности скелета уплотненного грунта к его максимальному значению по стандартному уплотнению , т.е. =/.

При этом принимают ≈ 0,92…0,98

Трамбование производится с перекрытием следов (рис.12.7)

3.3.д. Глубинное виброуплотнение

Применяют для уплотнения рыхлых песчаных грунтов естественного залегания, а также при укладке насыпных несвязных грунтов, устройстве обратных засыпок и т.п.

Рис. 12.13. Схема виброустановки ВУУП – 6:

1 – вибропогружатель В – 401; 2 – трубчатая штанга; 3 – стальные ребра
При вибрации в сыпучих грунтах связь между частицами нарушается, и они начинают перемещаться под действием инерционных сил вибрации и сил тяжести. В результате грунты уплотняются.

Рис. Схема уплотнения вибробуловой

Эффективность уплотнения повышается при подаче в зону уплотнения воды (гидровиброуплотнение – подача воды через сопла в вибробулаве). Достигают уплотнения до .

Существует два основных способа виброуплотнения:


  • В первом способе уплотнение происходит при погружении в песок вибратора (вибробулавы).
(Уплотнение рыхлых песков мощностью до 8…10м)

  • Второй способ заключается в погружении в грунт стержня с прикрепленным к его голове вибратором.
Грунтовые сваи

применяются для уплотнения и улучшения строительных свойств просадочных макропористых и насыпных пылевато-глинистых грунтов на глубине до 20(м).

Суть метода: устраивается вертикальная скважина (полость) путем погружения металлической трубы (пробойника) d ≈40(см), которая затем засыпается местным грунтом с послойным уплотнением.

В результате образуется массив уплотненного грунта, характеризующийся повышенной прочностью и более низкой сжимаемостью, в просадочных грунтах устраняются просадочные свойства.

Рис.12.11. Схема устройства грунтовых свай способом сердечника:

а – образование скважины забивкой инвентарной сваи; б – извлечение инвентарной сваи; в – заполнение скважины грунтом с трамбованием; 1 – инвентарный башмак; 2 – сердечник; 3 – молот; 4 – трамбовка; 5 – уплотненный грунт заполнения

Рис.12.12. Схема образования скважин энергией взрыва:

а – устройство скважины – шпура; б – скважина – шпур, подготовленная к взрыву; в – готовая скважина; 1 – башмак; 2 – буровая штанга; 3 – наголовник; 4 – молот; 5 – деревянный брусок для подвески заряда; 6 – детонирующий шнур; 7 – заряд ВВ

метод уплотнения песчаными и грунтовыми сваями (рис. 6).

Порядок данного метода уплотнения основания заключается в следующем:


  1. С поверхности уплотняемого основания погружается металлическая труба с раскрывающимся наконечником (происходит процесс уплотнения основания вокруг погружаемой трубы).

  2. После погружения трубы на необходимую отметку, наконечник трубы раскрывается и труба извлекается с одновременным заполнением песком с виброуплотнением. В лессовых грунтах заполнение трубы осуществляется местным грунтом с необходимым увлажнением.

  3. После извлечения трубы в уплотняемом основании образуется песчаная (грунтовая) свая, выполненная с заданной степенью плотности вместе с окружающим около свайным пространством.
а)

Рис. 6. Метод глубинного уплотнения основания с использованием песчаных (грунтовых) свай

а) – погружение трубы с раскрывающимся наконечником; б) – заполнение трубы песком с раскрытием наконечника; в) – извлечение трубы с формированием в основании песчаной сваи с заданной степенью плотности.


Котлован
Фундамент


Зона уплотнения


в


f св.


F упл.=1,4в х 1,4

Рис. 7. Схема использования песчаных свай для уплотнения основания

f св – площадь поперечного сечения сваи; F упл.- площадь уплотненного основания.
Чем чаще сделаны сваи, тем большую степень уплотнения получает грунт основания. Для избежания выпора грунта в котлован при уплотнении головы сваи, котлован может разрабатываться после уплотнения основания сваями (рис. 7).

Необходимое количество песчаных свай для уплотнения основания может быть определено исходя из следующего условия:

где е 0 , е упл. – соответственно, коэффициенты пористости грунта основания до и после уплотнения, последний, также как и f св - площадь поперечного сечения сваи, задаются в процессе проектирования; F упл.=1,4в х 1,4 - площадь уплотненного основания; в,  - соответственно ширина и длина проектируемого фундамента.

Следует отметить, что для связных водонасыщенных грунтов подобные сваи могут изготавливаться методом виброштампования (пневмопробойником) и заполняться щебеночно-песчаной смесью с добавлением цемента.

26. Замена слабых грунтов устройством грунтовых подушек. Расчёт и конструирование грунтовой подушки.

Если несущий слой грунта оказывается слабым, и его использование в качестве естественного основания оказывается невозможным или нецелесообразным, то приводят замену слабого грунта другим, обладающим высоким сопротивлением сдвигу и имеющим малую сжимаемость, который образует, так называемую, грунтовую подушку .

Рис. 12.1. Устройство песчаных подушек при малой (а) и большой (б) толще слабых грунтов:

1 – фундамент; 2 – слабый грунт; 3 – песчаная подушка; 4 – плотный подстилающий грунт.


  • Подушки делают из:

  • Крупнообломочные грунты (гравий, щебень);

  • Пески крупные и средней крупности (удобнее и легче использовать);

  • Шлак;

  • В лессах – местный перемолотый грунт.

  • Чаще всего грунтовые подушки имеют толщину 1…3 м (>3м не целесообразно).

  • Используют подушки: (см. рис.)

  • При малой толще слабых грунтов - обыкновенная песчаная подушка;

  • При большой толще слабых грунтов - висячая песчаная подушка;

Пески: α=30º…35º;

Гравий: α=40º…45º.

Тогда


  • Подушки отсыпаются слоями по 10…15 см, с уплотнением каждого слоя до γ d = 16…16,5 кН/м 3 .
Последовательность расчета фундамента на песчаной подушке

  1. Задаемся характеристиками нового грунтового основания (т.е. характеристиками песчаной подушки)
γ=19 кН/м 3 ; φ=35º; с=0

  1. Определяют размеры подошвы фундамента как фундамента, стоящего на грунте с выше перечисленными характеристиками.
P≤R

  1. Проверяем подстилающий слой

Если это условие не выполняется, то увеличивают высоту висячей подушки.


  1. Далее производится расчет деформаций основания. Совместная деформация песчаной подушки и подстилающего слоя S должна быть меньше S u .
S ≤ S u

Если это условие не выполняется. То также увеличивают высоту висячей подушки (или размеры фундамента).


  • Применение песчаной подушки приводит к следующим положительным эффектам:

  1. Поскольку модуль общей деформации песчаной подушки Е>20 МПа, то их примение приводит к уменьшению осадок сооружения.

  2. Поскольку песчаные подушки имеют большой коэффициент фильтрации (сильноводопроницаемы), то резко сокращается время консолидации основания.

  3. Песчаные подушки устраиваются из непучинистых грунтов (материалов), поэтому есть возможность уменьшить глубину заложения фундамента d из условия учета глубины сезонного промерзания грунта d f .
Стр 9
27. Уплотнение грунтов вертикальным дренированием с предварительной пригрузкой (обжатие грунта). Области применения.

Используют для уплотнения (улучшения строительных свойств) слабых водонасыщенных пылевато-глинистых грунтов и торфов, но на небольших площадках.

Рис. Схема уплотнения статической нагрузкой
Нельзя передавать большую нагрузку моментально, иначе произойдет выпор.

- эффективное давление

При t =∞; при t =0
Давление под насыпью должно быть не менее давления будущего сооружения, т.к. высота насыпей ограничена, этот метод как правило применяют при строительстве сооружений, передающих относительно небольшие давления на основание – это малоэтажные здания, ж/д полотна, автодороги, взлетно–посадочные полосы, резервуары и т.п.

Т.к. при использовании этого метода при уплотнении слабых грунтов мощностью > 10м требуется длительное время (для завершения процессов консолидации и стабилизации осадок). Для ускорения процесса уплотнения используют вертикальные дрены различных конструкций:


  • Песчаные дрены

  • Бумажные комбинированные дрены и др.
также применяют электроосмос

Рис. Схема уплотнения грунтов с помощью вертикальных дрен

Время уплотнения грунтов t обратно пропорционально коэффициенту фильтрации К ф и квадрату высоты зоны уплотнения - .

t = f ф ; ) – за счет изменения К ф многократно уменьшается время.

Технология устройства вертикальных песчаных дрен аналогична технологии изготовления песчаных свай.

Бумажные комбинированные дрены имеют поперечное сечение 4×100 мм и состоят из полимерного жесткого ребристого сердечника и фильтрующей оболочки.

Дрена вводится в грунт в обсадной трубе прямоугольного сечения статическим вдавливанием (на глубину до 20м) их шаг 1,5 – 3,0м (для песчаных) и 0,6 – 1,5м (для бумажных комбинированных).

28. Химические и термический методы закрепления слабых грунтов. Процессы, происходящие в грунтах при закреплении. Области применения.

3.4.а Цементация

Метод служит для закрепления (упрочнения) насыпных грунтов, галечниковых отложений, средних и крупнозернистых песков (сухих и влажных при К ф >80 м/сутки). Так же используют для заполнения карстовых пустот, закрепления и уменьшения водопроницаемости трещиноватых скальных грунтов.


Рис. Схема цементации

Цементный раствор нагнетаемый в грунт имеет В/Ц отношение 0,4…1,0 , часто в раствор добавляют песок.

Применяют забивные инъекторы – тампоны, опускаемые в пробуренные скважины. Цементация возможна и в водонасыщенных грунтах, но там где вода стоячая; если есть течение, то цементный раствор уносит.

Метод цементации применим также для усиления конструкций самих фундаментов. Для этого в теле фундамента пробуривают шпуры, через которые в материал или кладку фундамента под высоким давлением нагнетается цементный раствор.

3.4.б Силикатизация

Применяется для химического закрепления песков с К ф =0,5…80 м/сут, макропористых глинистых просадочных грунтов с К ф =0,2…2 м/сут (лессы), и отдельных видов насыпных грунтов.

Рис.12.14.Схема закрепления методом силикатизации оснований фундаментов (а), защиты фундаментов зданий при строительстве подземных сооружений (б) ,при возведении зданий (в):

1 – фундамент; 2 – инъекторы; 3 – зоны закрепления; 4 – строящееся подземное сооружение; 5 – существующий тоннель; 6 – строящееся здание

Сущность метода заключается в нагнетании в грунт силиката Na в виде раствора (жидкое стекло), которым заполняется поровое пространство. При соответствующих условиях (при наличии отвердителя), раствор переходит в гелеобразное состояние, затвердевая со временем. Создаются новые связи между частицами, что приводит к увеличению прочности уменьшению сжимаемости грунта.

Силикатизация:


  • однорастворная (лессовый грунт)

  • двухрастворная (пески)
-Особенностью силикатизации лессов является то, что в состав этих грунтов входят соли, выполняющие роль отвердителя жидкого стекла. Процесс закрепления происходит мгновенно, достигаемая прочность составляет 2МПа и более. Закрепление водоустойчиво, что обеспечивает ликвидацию просадочных свойств лессов.

Однорастворная силикатизация :

Na 2 O n SiO 2 + Са SO 4 + m(H 2 O) = nSiO 2 (m-1)H 2 O + Ca(OH) 2 + Na 2 SO 4

Na 2 O n SiO 2 - жидкое стекло;

Са SO 4 - соли в лессовом грунте;

nSiO 2 (m -1) H 2 O – гель кремниевой кислоты;

Двухрастворный способ заключается в следующем. В грунт погружаются инъекторы (трубы d =38мм) с нижним перфорированным звеном , длиной 0,5…1,5м. Через них в пески нагнетается раствор силиката натрия под давлением 1,5 МПа. Через соседнюю трубу, погруженную на расстоянии 15…25см, нагнетают раствор хлористого кальция.
Иногда оба раствора начинают поочередно через один и тот же инъектор (первый раствор при его погружении, второй раствор при извлечении).

После твердения геля прочность достигает 2…5МПа.

Na 2 O n SiO 2 + Са Cl 2 + (H 2 O) m = nSiO 2 (m-1)H 2 O + Ca(OH) 2 + 2NaCl

Na 2 O n SiO 2 – 1-ый раствор. Жидкое стекло;

Са Cl 2 - 2-ой раствор. Хлористый кальций;

nSiO 2 (m -1) H 2 O – вязкий материал, гель кремниевой кислоты.

Регулируя состав отвердителя можно в широких пределах варьировать время гелеобразования (от 20…30мин. до 10…16ч.). На полное твердение геля требуется 28 дней.

Увеличение времени гелеобразования необходимо в малопроницаемых грунтах, где для обеспечения необходимого радиуса закрепления требуется длительное время на проникновение раствора.

3.4.в Смолизация

– закрепление грунтов смолами. Сущность метода заключатся во введении в грунт высокомолекулярных органических соединений типа карбамидных, фенолформальдегидных и других синтетических смол в смеси с отвердителями – кислотами, кислыми солями.

Через определенное время в результате взаимодействия с отвердителями смола полимеризуется.

Время гелеобразования 1,5…2,5 часа, полное упрочнение происходит после двух суток. Смолизация эффективна в сухих и водонасыщенных песках с К ф =0,5-25 М/сут.

Достигаемая прочность колеблется в пределах 1…5 МПа и зависит в основном от концентрации смолы в растворе.

Организация работ аналогична силикатизации.

Радиус закрепленной зоны составляет 0,3…1,0м и зависит от К ф .

Метод относится к числу дорогостоящих.

3.4.г Глинизация и битумизация

Глинизацию применяют для уменьшения водопроницаемости песков. Через инъекторы в песок нагнетается водная суспензия бетонитовой глины с содержанием монтмориллонита ≥60%. Глинистые частицы, выпадая в осадок, заполняют поры песка, в результате чего его водопроницаемость снижается в несколько порядков.

Битумизацию применяют в основном для уменьшения водопроницаемости, закрепления трещиноватых скальных пород, при подземном течении вод.

Через скважины в скальный массив нагнетается расплавленный битум (или специальные его эмульсии). Происходит заполнение трещин и массив становится практически водонепроницаемым.

3.4.д Термическое закрепление грунтов (обжиг)

Применяют для упрочнения сухих макропористых пылевато-глинистых грунтов, обладающих газопроницаемостью (лессы).

Сущность: через грунт в течение нескольких суток (5…12 суток) пропускают раскаленный воздух или газы. Под действием высокой температуры (t ≈800˚C) отдельные минералы, входящие в состав скелета, оплавляются. В результате этого образуются прочные водостойкие структурные связи между частицами.

При обжиге грунты теряют большую часть химически связанной воды, что уменьшает просадочность, размокаемость, способность к набуханию. В результате термической обработки получается упрочненный конусообразный массив грунтаd поверху 1,5…2,5м понизу 0,2…0,4м глубина 8…10м.

Рис.12.15. Схемы термического закрепления грунтов при сжигании топлива в устье скважины (а) и при передвижении камеры сгорания вдоль скважины (б):

1 – трубопровод для жидкого топлива; 2 – то же, для воздуха; 3 – форсунка; 4 – затвор с камерой сгорания; 5 – скважина; 6 – просадочный лессовый грунт; 7 – зона термического закрепления; 8 – гибкий шланг; 9 – натяжное устройство; 10 – жароизолирующий материал
Применяется и другая технология, позволяющая сжигать топливо в любой по глубине части скважин. В результате образуются грунтовые массивы (термосваи) постоянного сечения. Сроки обжига в этом случае несколько сокращаются, упрощается технология работ.

Прочность обожженного массиваR ≈100 кг/см
29. Типы просадочности грунтов. Особенности проектирования и устройства фундаментов на лёссовых просадочных грунтах I и II типов просадочности.


  • Трудность строительства сооружений на лессовых просадочных грунтах состоит в том, что при обводнении грунтов в основании сооружений происходят большие и часто не равномерные деформации, называемые просадками.
В результате сооружения разрушаются и становятся непригодными для дальнейшей эксплуатации.

  • Просадки лессовых грунтов возникают при одновременном воздействии двух факторов:

  1. нагрузок от сооружений и собственного веса грузовой просадочной толщи, и

  2. замачивания при подъеме горизонта подземных вод или за счет внешних источников (атмосферные осадки, промышленые сбросы, утечки и т.д.)

П :

где e - коэффициент пористости грунта природного сложения и влажности

Коэффициент пористости, соответcтвующий влажности на границе текучести и определяемый по формуле:
где и - соотвецтвенно плотность твердых частиц и воды

Показатель просадочности является номенклатурным признаком и лишь определяет склонность грунта к просадкам, не позволяя достоверно дать величину возможной просадки грунта.


  • Явление просадки можно наглядно представить на рисунке

Рис. 15.8. Осадка фундамента на лессовом грунте

Рис. 15.9. Зависимость деформаций (а) и относительной просадки (б)лессового грунта от нормального давления
аб – практически прямолинейный участок представляет зависимость осадков от давления под подошвой фундамента

бв – участок соотвецтвующей полной просадке грунта под нагрузкой после замачивания

Характеристики просадочных свойств.

Она представляет собой относительное сжатие грунта при заданых давлениях и степени повышения влажности и определяется по формуле:

– применяется при природном W, после замачивания

Примняется после замачивания

Применяется при природном W,после обжатия

Грунт считается просадочным при условии 0.01

Относительная просадочность зависит от давления, степени плотности грунта природной влажности и его состава, степени повышения влажности.

легко устанавливается из графика зависимости от давления Р (рис.15.9. б), который в свою очередь строится при испытаниях образцов лессового грунта в компрессионных испытаниях с замачиванием при различных нагрузках. Эта характеристика является очень важной при расчете просадок.

Так например, за счет разрушения структурных связей особенно резко (в 6…10 раз) снижается сцепление при относительно небольшом (в 1,05…1,2 раза) уменьшении угла внутреннего трения.

6.2.а. Принципы строительства на просадочных грунтах

В первую очередь при проектировании оснований и фундаментов зданий на просадочных грунтах учитывают возможность их умачивания и возникновения просадочных деформаций.

Надежность и нормальная эксплуотация зданий достигается применением одного из следующих принципов :


  • Осуществление комплекса мероприятий, включающего подготовку основания, (в водозащитные и конструктивные мероприятия входят: компановка генплана; планировка застраиваемых территорий; устройство под зданиями маловодопроницаемых экранов; качественная засыпка водонепроницаемых котлованов и траншей; устройство вокруг зданий водонепроницаемых отмосток; отвод аварийных вод за прделы зданий и в ливнесточную сеть.)
Конструктивные мероприятия объединяют в группы по составу и способам осуществления традиционных, для строительства, в особых грунтовых условиях.

Для жестких зданий:


  • эта разрезка зданий осадочными швами на отсеки

  • устройство железо – бетонных поясов и армированных швов

  • усиление фундаментно – подвальной части путем применения монолитных или сборно – монолитных фундаментов
Для податливых и гибких зданий:

  • мероприятия по дополнительному увеличению потдатливости (введение гибких связей;повышение площади операния)

  • место, обеспечивающие нормальную эксплуотацию зданий при возможных, часто неравномерных просадок. Для этого применяют конструктивные решения , позволяющие в короткие сроки восстановить после неравномерных просадок нормальную эксплуотаию кранов, лифтов, оборудования, путем рихтовки подкрановых путей и направляющих лифтов, поднятия опор домкратом.

30. Особенности расчета и устройства фундаментов при динамических нагрузках.
Расчетную сейсмическую нагрузку получают в результате динамического расчета всего здания на колебания и прикладывают в точках расположения масс элементов конструкций.

При строительстве зданий в сейсмических районах:

Схема свайного фундамента с промежуточной подушкой

1-фундаментный блок; 2-промежуточная подушка; 3-железобетонные оголовки; 4-железобетонные сваи; 5-поверхность дна котлована
В сейсмических районах при соответствующем технико-экономическом обосновании возможно применение свайных фундаментов с промежуточной подушкой из сыпучих материалов (щебня, гравия, песка крупного и средней крупности

Фундамент выполнен в виде платформы, состоящей из верхней и нижней плит с полостями, внутри которых расположены промежуточные элементы шарообразной формы. Плиты установлены относительно друг друга с зазором, а полости имеют параллельные горизонтальные поверхности в поперечном и продольном направлениях с полусферическими завершениями. Между опорной плитой и платформой установлены амортизаторы. Верхние этажи здания снабжены вантами, закрепленными в вертикальных опорах, на которые базированы перекрытия, а верхняя фундаментная плита снабжена выступами, выполненными соосно с пазами опорной плиты.


  • Маятниковая скользящая опора (1) предназначена для отделения грунта (2) основания от сооружения (3) при вызываемых землетрясением движениях грунта (2) основания Опора (1) содержит первую опорную плиту (5) скольжения с первой вогнутой поверхностью (5") скольжения, опорный башмак (4), находящийся в скользящем контакте с первой поверхностью (5"), а также вторую опорную плиту (6) со второй вогнутой поверхностью (6"), которая контактирует с опорным башмаком (4). Первая поверхность скольжения (5") обеспечивает, по меньшей мере, в одном измерении устойчивое положение равновесия опорного башмака (4), в которое он самостоятельно возвращается после отклонения, вызванного воздействием наружных сил. Антифрикционный материал (9а, 9b) содержит пластмассу с упругопластичными компенсирующими свойствами и с низким коэффициентом трения, при этом пластмасса обладает компенсирующими свойствами, позволяющими компенсировать отклонение 0,5 мм от заданной плоскости заданной поверхности скольжения (5"). Технический результат: повышение долговечности, прочности и обеспечение наиболее точного возвращения элемента скольжения в равновесное положение



  • Опора сейсмостойкого сооружения содержит опорные части, одна из которых выполнена с возможностью закрепления на опорной плите сооружения, а другая - на фундаменте, причем опорные части соединены между собой с помощью маятниковой тяги. Опорные части содержат каждая ригель, на котором закреплены стойки, свободные концы которых выполнены с возможностью закрепления на опорной плите сооружения или на фундаменте, причем каждый ригель расположен между стойками другой упомянутой опорной части, при этом в центральной части ригеля выполнено отверстие, через которое пропущена маятниковая тяга, представляющая собой двойной карданный шарнир Гука, при этом выходы последнего шарнирно соединены каждый с соответствующим ригелем с возможностью поворота относительно вертикальной оси.

Виброизолятор для сооружений включает слой резины с арматурой в виде выступающих за габариты слоя резины прямоугольных металлических пластин , термически прикрепленных к слою резины по опорным поверхностям. На центральных участках боковых поверхностей слоя резины образованы трапециевидные углубления, с плавными сопряжениями прямолинейных и наклонных участков, при этом размеры и расположение углублений на боковых поверхностях из условия сохранения прямоугольной формы деформированного виброизолятора.
4. Фундаменты под машины.

Основные требования к фундаментам:


  1. Фундаменты должны обеспечить стабильную работу машины, механизма, расположенного на нем.

  2. Динамические воздействия от машин не должны угрожающе влиять на фундаменты зданий, сооружений.
Воздействие машин и механизмов можно разделить на следующие виды:

  1. Машины и механизмы с уравновешивающим воздействием. (Обычно вращательного типа: эл. моторы, центробежные насосы и т. п. – динамические воздействия возникают в пусковой период или из-за износа отдельных частей).

  2. Машины и механизмы с не уравновешивающим воздействием. (Поступательно-вращательное движение – поршневые насосы, пилорамы, компрессоры, двигатели внутреннего сгорания). Наиболее опасно – совпадение частот колебаний с собственными частотами сооружений (резонансные явления).

  3. Ударного действия. (Молоты, быстродействующие прессы, копры и т. д.).

  4. Прочие. (Станы, станки и т. д.).
Фундаменты проектируются из условия ограничения амплитуды колебания системы: машина + фундамент.

А  А доп

А доп = 0,1…0,3 мм – предельно допустимые амплитуды колебаний, назначаются в зависимости от вида машины, её обслуживания, возможности без опасной работы человека.

В первом приближении, при условии совмещения ц.т. фундамента и машины, данную систему можно принять за 1 материальную точку. Тогда, в плоской постановке данная система будет иметь 3 вида колебаний:

Вертикальное; горизонтальное и вращательное.

а). Если определяющими являются вертикальные колебания , то дифференциальное уравнение колебаний может быть записано следующим образом:

При решении данного уравнения получим амплитуду вертикальных колебаний

где Р z – вертикальная составляющая возмущающих сил;

К z – коэффициент жёсткости основания при упругом равномерном сжатии [т/м]; К z = С z x F

C z – коэффициент упругого равномерного сжатия [т/м 3 ] (табл. СНиП);

m – масса фундамента и машины;

 - угловая скорость (частота) [рад./сек].

б). При (в случае распластанного фундамента, L/h > 3), будем иметь:

К x = C x x F - коэффициент жёсткости основания при сдвиге фундамента по подошве;

С x = 0,7 С z – коэффициент упругого равномерного сдвига.

в). При горизонтальной возмущающейся силе (в случае высокого фундамента L/h
h

K  - коэф. жёсткости основания при упругом повороте; I – момент инерции подошвы фундамента; Q – момент инерции массы фундамента и машины; М – возмущающий момент относительно ц.т.; А z , А x , А  - амплитуды, соответственно вертикальных, горизонтальных и вращательных колебаний (поворота).

Похожие публикации