Экспертное сообщество по ремонту ванных комнат

Какие виды механической энергии существуют. Механическая энергия Виды механической энергии и чем они обусловлены

Слово энергия мы слышим очень часто. Жизненная энергия, внутренняя энергия, электроэнергия, атомная энергия... Но попробуйте дать точный ответ на вопрос, что такое энергия? Здесь задумается практически каждый. Так же и с работой . Все ходят на работу, у всех полно работы. Но что такое работа? А ответ прямо здесь, в нашей статье!

Полезная и интересная информация по другим темам – на нашем канале в телеграм .

Энергия

Пойдем по принципу «чем проще – тем лучше». Среди всех определений энергии можно выделить одно:

Энергия – одно из основных свойств материи и мера способности совершать работу.

Энергия в классической механике измеряется в Джоулях и чаще всего обозначается буквой E.

И тут мы плавно подходим к работе. Конечно, работать мало кто любит, отдыхать гораздо приятнее. Но давайте и про работу почитаем.

Работа

Работа – мера воздействия силы на тело или систему тел.

И работа, и энергия – скалярные физические величины. Как и энергия, работа в классической механике измеряется в Джоулях.

Допустим, мы взяли тележку c кирпичами (пусть она весит m килограмм), начали ее толкать с определенной силой F и переместили тем самым все это добро на расстояние s .

Тогда работа, которую мы совершили (а мы определенно совершили работу, пусть и бессмысленную), будет вычисляться по соответствующей формуле для работы в механике:

При этом пока мы толкали тележку, она приобрела какую-то скорость v , а значит, и энергию.

Кинетическая энергия (энергия движения) тележки вычисляется по формуле:

Если мы поднатужимся и закатим нашу телегу на горку высотой h , то она приобретет потенциальную энергию, которую тоже легко можно вычислить:


Кстати! Для всех наших читателей сейчас действует скидка 10% на .

Работа не совершается сама по себе. Работа совершается за счет изменения энергии. Какова связь между работой и энергией?

Например, работа силы тяжести по модулю равна изменению потенциальной энергии тела.

Существует теорема о кинетической энергии системы . Она гласит, что изменение кинетической энергии системы равно работе всех внутренних и внешних сил, действующих на тела системы.

Закон сохранения энергии

Закон сохранения энергии – фундаментальный закон природы, о котором никогда не стоит забывать.

Общее количество энергии замкнутой физической системы не прибывает и не убывает, а переходит из одной формы в другую, всегда оставаясь постоянным.

Так, если телега скатится с горки, ее потенциальная энергия перейдет в кинетическую. Силы трения (диссипативные силы) мы здесь не рассматриваем. В реальном мире телега, конечно, затормозит, но энергия не исчезнет, а перейдет во внутреннюю энергию молекул вследствие трения колес о поверхность.

Закон сохранения энергии применим не только в рамках классической механики. Это закон, применимый к целой Вселенной. Вот что говорил о законе сохранения энергии Ричард Фейман:

Это математический принцип, утверждающий, что существует некоторая численная величина, которая не изменяется ни при каких обстоятельствах. Это отнюдь не описание механизма явления или чего-то конкретного… Просто отмечается то странное обстоятельство, что можно подсчитать какое-то число и затем спокойно следить, как природа будет выкидывать любые свои трюки, а потом опять подсчитать это число - и оно останется прежним.

Пример решения задачи

А теперь рассмотрим пример задачи, в которой нужно найти работу

Какой бы сложной ни казалась задача, эксперты профессионального студенческого сервиса обязательно смогут быстро подобрать к ней ключ! Не стесняйтесь обращаться к нам, помощь профессионалов еще ни для кого не была лишней!

Применение атомной энергии Применение ядерной энергии в современном мире оказывается настолько важным, что если бы мы завтра проснулись, а энергия ядерной реакции исчезла, мир, таким как мы его знаем, пожалуй, перестал бы существовать. Мирное использование источников...

Виды энергии – известные человечеству типы энергии

Понятие «энергия» определяется как мера различных форм движения материи и как мера перехода движения материи из одной формы в другую. Соответственно, виды и типы энергии различают по формам движения материи. Челочек имеет дело с различными видами энергии. По сути, весь технологический процесс есть преобразование одних видов энергии в другие. В процессе прохождения технологического тракта энергия многократно преобразуется из одного вида в другой, что ведет к уменьшению ее полезного количества из-за потерь и рассеяния в окружающей среде.

Типы энергии известные сегодня

  • Механическая
  • Электрическая
  • Химическая
  • Тепловая
  • Световая (Лучистая)
  • Ядерная (Атомная)
  • Термоядерная (Термоядерного синтеза)
Кроме того, нам известны и другие виды энергии, названия которых имеют не физический, а описательный смысл, такие как ветровая энергия, или геотермальная энергия. В подобных случаях физическая форма характера энергии подменяется названием ее источника. Поэтому правильно говорить скорее о механической энергии ветра, энергии потока ветра, или тепловой энергии геотермальных источников. В противном случае, количество псевдо энергий можно будет плодить до бесконечности, выдумывая мусорную энергию, водородную энергию, ментальную энергию, или жизненную энергию, и энергию рук. Сочетая слово «энергия» с конкретными объектами мы лишаем эту связку физического смысла. Невозможно измерить количество психической энергии, или энергии воли. Остается лишь намек, что предмет имеет какую-то энергию, а какую – нам неизвестно. Налицо оказывается замусоривание текста или речи словом, не несущим смысловой нагрузки, ведь каждый предмет несет энергию и упоминать об этом бессмысленно. А по аналогии с энергией мысли должна появиться масса мысли, длина, ширина и высота мысли, а также ее плотность. Короче говоря, такие обороты – очевидное свидетельство глупости и неграмотности автора, или оратора.

Физические понятия, связанные с определением слова «энергия»

Но вернемся к реальным физическим понятиям, связанным с определением слова «энергия». Выше перечисленные типы энергии известны человеку и использовались им на протяжении всей истории цивилизации. Исключение составляет разве что энергия атомного распада, полученная лишь в начале 20-го века. Так, механическую энергию мы используем до сих пор, катаясь на велосипеде, используя маятниковые часы, поднимая и опуская грузы краном. Электрическая энергия знакома нам издревле в виде молний и статического электричества. Однако широко этот тип энергии стал применяться лишь с 19 века, когда были изобретены Вольтов столб – батарея постоянного тока и . Однако и в древности люди знали и использовали этот вид энергии, хотя и не повсеместно. Известны древнеегипетские украшения и предметы культа, покрытие которых могло быть выполнено только электролизом. — пожалуй, самая распространенный и широко используемый вид энергии, как в древности, так и в наши дни. Костер, угли, горелка, спички и многие другие предметы, связанные с горением имеют в своей основе энергию химического взаимодействия органического вещества и кислорода. Сегодня высокотехнологичное «горение» осуществляется в и , в и . Однако такие устройства, как турбины и двигатели внутреннего сгорания между сырьем (химической энергией) и конечным продуктом (электрической энергией) имеют нехорошего посредника – . К большому сожалению, к.п.д. тепловых машин невелик, причем ограничения накладывает не материал, а теория. Для предел равен 40%. На основе химических взаимодействий, химической энергии действуют и человеческие тела и все животные. Употребляя в пищу растения, мы получаем от них энергию химических связей, сформированную благодаря поглощению солнечной энергии. То есть, опосредованно, человек также питается солнечной энергией, как питается ей все живое на Земле. Солнца – это та энергия, без которой не существовало бы жизни на нашей планете. Практически все виды и типы энергии, кроме атомной и термоядерной, можно полагать вторичными, по отношению к лучистой солнечной энергии. Механическая энергия приливов-отливов, а также тепловая геотермальных источников также не связаны с солнечным излучением.

Термоядерная энергия лежит в основе работы нашего центрального светила – Солнца

А это значит, что и солнечная энергия в свою очередь является порождением термоядерной энергии синтеза, выделяющейся в недрах Солнца. Таким образом, подавляющее большинство видов энергии, используемых нами на Земле, имеют своего первичного прародителя в виде термоядерной энергии синтеза. Ядерная, или атомная энергия – единственный вид энергии, выпадающий за пределы «стандартного» природного энергетического оборота. До появления человека, природа не знала (за редким исключением) процессов массового точечного распада атомных ядер с выделением огромной энергии. Исключение составляет африканский природный «атомный реактор» — месторождение урановых руд, где идут реакции атомного распада с нагревом окружающих пород. Однако в природе атомный распад длится миллионы лет, ведь периоды полураспада урана и плутония весьма велики. И хотя атомному распаду подвержены также многие другие атомы, помимо урана и плутония, в целом, в единицу времени эти процессы не вызывают существенных изменений в окружающем веществе. Человек внес свои изменения в энергетический баланс планеты, взрывая бомбы, строя атомные станции, сжигая нефть, газ и уголь. Безусловно, подобные процессы происходили и до человека, но они были растянуты на миллионы лет. Падали метеориты, горели леса, происходили выбросы углекислого газа из болот и толщ мирового океана, распадался уран. Но медленно — в небольших объемах на единицу времени.

Альтернативные источники

Сегодня активно развиваются альтернативные виды энергии и альтернативные . Однако в самих этих словах уже кроется ошибочное отношение к слову «энергия». Называя источники энергии «альтернативными» мы противопоставляем их «традиционным» источникам – углю, нефти и газу. И это понятно. Но, говоря «альтернативный вид энергии» мы несем чушь, потому что различные виды энергии существуют вне наших желаний. И не ясно, чему альтернативна энергия ветра, ведь она просто есть. Или чему альтернативна солнечная и термоядерная энергия нашего светила. Мы в любом случае, пользуемся ею, и странно называть ее альтернативной, поскольку как раз для нее альтернатив то и нет. В ближайшие тысячи лет мы никуда не уйдем от использования солнечной энергии, поскольку на ней базируется вся экосистема планеты. Аналогично странно выглядят слова «нетрадиционные виды энергии», «возобновляемые виды энергии», или «экологически чистые виды энергии». Какой вид энергии традиционен? Как можно возобновить тот или иной вид энергии? А как проверить энергию на экологическую чистоту? «Традиционность», «возобновляемость» и «экологичность» разумнее и правильнее отнести к . Тогда все сразу станет ясно и понятно. И тогда, упорядочив причинно-следственные связи можно приступать к поиску. Нетрадиционные виды источников энергии можно легко найти, изучая природу и окружающий мир. Здесь Вам и навоз для отопления, и сено, и генератор, использующий мускульную силу.

Возобновляемые источники энергии следует искать только в среде природных процессов

Подобных процессов не так уж много и все они связаны с движением по планете вещества – земли, воды, воздуха, а также с деятельностью живых организмов. Хотя, строго говоря, возобновляемых источников энергии – нет, поскольку главная наша «батарейка» — Солнце – имеет ограниченный срок службы. А для поиска экологически чистых источников следует для начала ясно определить критерии экологичности, ведь, по сути, любое вмешательство человека в энергобаланс планеты наносит урон экологии. Строго говоря, не может быть экологически чистых источников энергии, ведь они в любом случае будут влиять на экологию. Мы можем лишь свести это влияние к минимуму, или компенсировать его. При этом любые компенсационные воздействия должны производиться в рамках глобальной аналитической прогнозной модели.

Энергия - это то, благодаря чему существует жизнь не только на нашей планете, но и во Вселенной. При этом она может быть очень разной. Так, тепло, звук, свет, электричество, микроволны, калории представляют собой различные виды энергии. Для всех процессов, происходящих вокруг нас, необходима эта субстанция. Большую часть энергии все сущее на Земле получает от Солнца, но имеются и другие ее источники. Солнце передает ее нашей планете столько, сколько бы выработали одновременно 100 млн самых мощных электростанций.

Что такое энергия?

В теории, выдвинутой Альбертом Эйнштейном, изучается взаимосвязь материи и энергии. Этот великий ученый смог доказать способность одной субстанции превращаться в другую. При этом выяснилось, что энергия является самым важным фактором существования тел, а материя вторична.

Энергия - это, по большому счету, способность выполнять какую-то работу. Именно она стоит за понятием силы, способной двигать тело или придавать ему новые свойства. Что же означает термин «энергия»? Физика - это которой посвятили свою жизнь многие ученые разных эпох и стран. Еще Аристотель использовал слово «энергия» для обозначения деятельности человека. В переводе с греческого языка «энергия» - это «деятельность», «сила», «действие», «мощь». Первый раз это слово появилось в трактате ученого-грека под названием «Физика».

В общепринятом сейчас смысле данный термин был введен в обиход английским ученым-физиком Это знаменательное событие произошло в далеком 1807 году. В 50-х годах XIX в. английский механик Уильям Томсон впервые использовал понятие «кинетическая энгергия», а в 1853 г. шотландский физик Уильям Ренкин ввел термин «потенциальная энергия».

Сегодня эта скалярная величина присутствует во всех разделах физики. Она является единой мерой различных форм движения и взаимодействия материи. Другими словами, она представляет собой меру преобразования одних форм в другие.

Единицы измерения и обозначения

Количество энергии измеряется Эта специальная единица в зависимости от вида энергии может иметь разные обозначения, например:

  • W - полная энергия системы.
  • Q - тепловая.
  • U - потенциальная.

Виды энергии

В природе существует множество самых разных видов энергии. Основными из них считаются:

  • механическая;
  • электромагнитная;
  • электрическая;
  • химическая;
  • тепловая;
  • ядерная (атомная).

Есть и другие виды энергии: световая, звука, магнитная. В последние годы все большее число ученых-физиков склоняются к гипотезе о существовании так называемой «темной» энергии. Каждый из перечисленных ранее видов данной субстанции имеет свои особенности. Например, энергия звука способна передаваться при помощи волн. Они способствуют возникновению вибрации барабанных перепонок в ухе людей и животных, благодаря которой можно слышать звуки. В ходе различных химических реакций высвобождается энергия, необходимая для жизнедеятельности всех организмов. Любое топливо, продукты питания, аккумуляторы, батарейки являются хранилищем этой энергии.

Наше светило дает Земле энергию в виде электромагнитных волн. Только так она может преодолеть просторы Космоса. Благодаря современным технологиям, таким как солнечные батареи, мы можем использовать ее с наибольшим эффектом. Излишки неиспользованной энергии аккумулируются в особых энергохранилищах. Наряду с вышеперечисленными видами энергии часто используются термальные источники, реки, океана, биотопливо.

Механическая энергия

Этот вид энергии изучается в разделе физики, называемом «Механикой». Она обозначается буквой Е. Ее измерение осуществляется в джоулях (Дж). Что собой представляет эта энергия? Физика механики изучает движение тел и взаимодействие их друг с другом либо с внешними полями. При этом энергия, обусловленная движением тел, называется кинетической (обозначается Ек), а энергию, обусловленную или внешних полей, именуют потенциальной (Еп). Сумма движения и взаимодействия представляет собой полную механическую энергию системы.

Для расчета обоих видов существует общее правило. Для определения величины энергии следует вычислить работу, необходимую для перевода тела из нулевого состояния в данное состояние. При этом чем больше работа, тем большей энергией будет обладать тело в данном состоянии.

Разделение видов по разным признакам

Существует несколько видов разделения энергии. По разным признакам ее делят на: внешнюю (кинетическую и потенциальную) и внутреннюю (механическую, термическую, электромагнитную, ядерную, гравитационную). Электромагнитная энергия в свою очередь подразделяется на магнитную и электрическую, а ядерная - на энергию слабого и сильного взаимодействия.

Кинетическая

Любые движущиеся тела отличаются наличием кинетической энергии. Она часто так и называется - движущей. Энергия тела, которое движется, теряется при его замедлении. Таким образом, чем быстрее скорость, тем больше кинетическая энергия.

При соприкосновении движущегося тела с неподвижным объектом последнему передается часть кинетической, приводящая и его в движение. Формула энергии кинетической следующая:

  • Е к = mv 2: 2,
    где m — масса тела, v - скорость движения тела.

В словах эту формулу можно выразить следующим образом: кинетическая энергия объекта равна половине произведения его массы на квадрат его скорости.

Потенциальная

Этим видом энергии обладают тела, которые находятся в каком-либо силовом поле. Так, магнитная возникает, когда объект находится под действием магнитного поля. Все тела, находящиеся на земле, обладают потенциальной гравитационной энергией.

В зависимости от свойств объектов изучения они могут иметь различные виды потенциальной энергии. Так, упругие и эластичные тела, которые способны вытягиваться, имеют потенциальную энергию упругости либо натяжения. Любое падающее тело, которое было ранее неподвижно, теряет потенциальную и приобретает кинетическую. При этом величина этих двух видов будет равнозначна. В поле тяготения нашей планеты формула энергии потенциальной будет иметь следующий вид:

  • Е п = mhg,
    где m — масса тела; h - высота центра массы тела над нулевым уровнем; g - ускорение свободного падения.

В словах эту формулу можно выразить так: потенциальная энергия объекта, взаимодействующего с Землей, равна произведению его массы, ускорению свободного падения и высоты, на которой оно находится.

Эта скалярная величина является характеристикой запаса энергии материальной точки (тела), находящейся в потенциальном силовом поле и идущей на приобретение кинетической энергии за счет работы сил поля. Иногда ее называют функцией координат, являющейся слагаемым в лангранжиане системы (функция Лагранжа динамической системы). Эта система описывает их взаимодействие.

Потенциальную энергию приравнивают к нулю для некой конфигурации тел, расположенных в пространстве. Выбор конфигурации определяется удобством дальнейших вычислений и называется «нормировкой потенциальной энергии».

Закон сохранения энергии

Одним из самых основных постулатов физики является Закон сохранения энергии. В соответствии с ним, энергия ниоткуда не возникает и никуда не исчезает. Она постоянно переходит из одной формы в другую. Иными словами, происходит только изменение энергии. Так, например, химическая энергия аккумулятора фонарика преобразуется в электрическую, а из нее - в световую и тепловую. Различные бытовые приборы превращают электрическую в свет, тепло или звук. Чаще всего конечным результатом изменения являются тепло и свет. После этого энергия уходит в окружающее пространство.

Закон энергии способен объяснить многие Ученые утверждают, что общий объем ее во Вселенной постоянно остается неизменным. Никто не может создать энергию заново или уничтожить. Вырабатывая один из ее видов, люди используют энергию топлива, падающей воды, атома. При этом один ее вид превращается в другой.

В 1918 г. ученые смогли доказать, что закон сохранения энергии представляет собой математическое следствие трансляционной симметрии времени - величины сопряженной энергии. Другими словами, энергия сохраняется вследствие того, что законы физики не отличаются в различные моменты времени.

Особенности энергии

Энергия - это способность тела совершать работу. В замкнутых физических системах она сохраняется на протяжении всего времени (пока система будет замкнутой) и представляет собой один из трех аддитивных интегралов движения, сохраняющих величину при движении. К ним относятся: энергия, момент Введение понятия «энергия» целесообразно тогда, когда физическая система однородна во времени.

Внутрення энергия тел

Она представляет собой сумму энергий молекулярных взаимодействий и тепловых движений молекул, составляющих его. Ее нельзя измерить напрямую, поскольку она является однозначной функцией состояния системы. Всегда, когда система оказывается в данном состоянии, ее внутренняя энергия имеет присущее ему значение, независимо от истории существования системы. Изменение внутренней энергии в процессе перехода из одного физического состояния в другое всегда равно разности между ее значениями в конечном и начальном состояниях.

Внутренняя энергия газа

Помимо твердых тел, энергию имеют и газы. Она представляет собой кинетическую энергию теплового (хаотического) движения частиц системы, к которым относятся атомы, молекулы, электроны, ядра. Внутренней энергией идеального газа (математической модели газа) является сумма кинетических энергий его частиц. При этом учитывается число степеней свободы, представляющее собой число независимых переменных, определяющих положение молекулы в пространстве.

С каждым годом человечество потребляет все большее количество энергоресурсов. Чаще всего для получения энергии, необходимой для освещения и отопления наших жилищ, работы автотранспорта и различных механизмов, используются такие ископаемые углеводороды, как уголь, нефть и газ. Они относятся к

К сожалению, только незначительная часть энергии добывается на нашей планете с помощью возобновимых ресурсов, таких как вода, ветер и Солнце. На сегодняшний день их удельный вес в энергетике составляет всего 5 %. Еще 3 % люди получают в виде ядерной энергии, производимой на атомных электростанциях.

Невозобновляемые ресурсы имеют следующие запасы (в джоулях):

  • ядерная энергия - 2 х 10 24 ;
  • энергия газа и нефти - 2 х 10 23 ;
  • внутренне тепло планеты - 5 х 10 20 .

Годовая величина возобновляемых ресурсов Земли:

  • энергия Солнца - 2 х 10 24 ;
  • ветер - 6 х 10 21 ;
  • реки - 6,5 х 10 19 ;
  • морские приливы - 2,5 х 10 23 .

Только при своевременном переходе от использования невозобновляемых запасов энергии Земли к возобновляемым человечество имеет шанс на долгое и счастливое существование на нашей планете. Для воплощения передовых разработок ученые всего мира продолжают тщательно изучать разнообразные свойства энергии.

  • 1.3 Динамика вращательного движения твердых тел
  • 1.3.1 Момент силы, момент импульса. Закон сохранения момента импульса
  • 1.3.2 Кинетическая энергия вращательного движения. Момент инерции
  • II Раздел молекулярная физика и термодинамика
  • 2.1 Основные положения молекулярно-кинетической теории газов
  • 2.1.1 Агрегатные состояния вещества и их признаки. Методы описания физических свойств вещества
  • 2.1.2 Идеальный газ. Давление и температура газа. Шкала температур
  • 2.1.3 Законы идеального газа
  • 2.2 Распределение Максвелла и Больцмана
  • 2.2.1 Скорости газовых молекул
  • 2.3. Первое начало термодинамики
  • 2.3.1 Работа и энергия в тепловых процессах. Первое начало термодинамики
  • 2.3.2 Теплоемкость газа. Применение первого начала термодинамики к изопроцессам
  • 2.4. Второе начало термодинамики
  • 2.4.1. Работа тепловых машин. Цикл Карно
  • 2.4.2 Второе начало термодинамики. Энтропия
  • 2.5 Реальные газы
  • 2.5.1 Уравнение Ван-дер-Ваальса. Изотермы реального газа
  • 2.5.2 Внутренняя энергия реального газа. Эффект Джоуля-Томсона
  • III Электричество и магнетизм
  • 3.1 Электростатика
  • 3.1.1 Электрические заряды. Закон Кулона
  • 3.1.2 Напряженность электрического поля. Поток линий вектора напряженности
  • 3.1.3 Теорема Остроградского - Гаусса и его применение для расчета полей
  • 3.1.4 Потенциал электростатического поля. Работа и энергия заряда в электрическом поле
  • 3.2 Электрическое поле в диэлектриках
  • 3.2.1 Электроемкость проводников, конденсаторы
  • 3.2.2 Диэлектрики. Свободные и связанные заряды, поляризация
  • 3.2.3 Вектор электростатической индукции. Сегнетоэлектрики
  • 3.3 Энергия электростатического поля
  • 3.3.1 Электрический ток. Законы Ома для постоянного тока
  • 3.3.2 Разветвленные цепи. Правила Кирхгофа. Работа и мощность постоянного тока
  • 3.4 Магнитное поле
  • 3.4.1 Магнитное поле. Закон Ампера. Взаимодействие параллельных токов
  • 3.4.2 Циркуляция вектора индукции магнитного поля. Закон полного тока.
  • 3.4.3 Закон Био-Савара-Лапласа. Магнитное поле прямого тока
  • 3.4.4 Сила Лоренца Движение заряженных частиц в электрических и магнитных полях
  • 3.4.5 Определение удельного заряда электрона. Ускорители заряженных частиц
  • 3.5 Магнитные свойства вещества
  • 3.5.1 Магнетики. Магнитные свойства веществ
  • 3.5.2 Постоянные магниты
  • 3.6 Электромагнитная индукция
  • 3.6.1 Явления электромагнитной индукции. Закон Фарадея. Токи Фуко
  • 3.6.2 Ток смещения. Вихревое электрическое поле Уравнения Максвелла
  • 3.6.3 Энергия магнитного поля токов
  • IV Оптика и основы ядерной физики
  • 4.1. Фотометрия
  • 4.1.1 Основные фотометрические понятия. Единицы измерений световых величин
  • 4.1.2 Функция видности. Связь между светотехническими и энергетическими величинами
  • 4.1.3 Методы измерения световых величин
  • 4.2 Интерференция света
  • 4.2.1 Способы наблюдения интерференции света
  • 4.2.2 Интерференция света в тонких пленках
  • 4.2.3 Интерференционные приборы, геометрические измерения
  • 4.3 Дифракция света
  • 4.3.1 Принцип Гюйгенса-Френеля. Метод зон Френеля. Зонная пластинка
  • 4.3.2 Графическое вычисление результирующей амплитуды. Применение метода Френеля к простейшим дифракционным явлениям
  • 4.3.3 Дифракция в параллельных лучах
  • 4.3.4 Фазовые решетки
  • 4.3.5 Дифракция рентгеновских лучей. Экспериментальные методы наблюдения дифракции рентгеновских лучей. Определение длины волны рентгеновских лучей
  • 4.4 Основы кристаллооптики
  • 4.4.1 Описание основных экспериментов. Двойное лучепреломление
  • 4.4.2 Поляризация света. Закон Малюса
  • 4.4.3 Оптические свойства одноосных кристаллов. Интерференция поляризованных лучей
  • 4.5 Виды излучения
  • 4.5.1 Основные законы теплового излучения. Абсолютно черное тело. Пирометрия
  • 4.6 Действие света
  • 4.6.1 Фотоэлектрический эффект. Законы внешнего фотоэффекта
  • 4.6.2 Эффект Комптона
  • 4.6.3 Давление света. Опыты Лебедева
  • 4.6.4 Фотохимическое действие света. Основные фотохимические законы. Основы фотографии
  • 4.7 Развитие квантовых представлений об атоме
  • 4.7.1 Опыты Резерфорда по рассеянию альфа-частиц. Планетарно-ядерная модель атома
  • 4.7.2 Спектр атомов водорода. Постулаты Бора
  • 4.7.3 Корпускулярно-волновой дуализм. Волны де Бройля
  • 4.7.4 Волновая функция. Соотношение неопределенности Гейзенберга
  • 4.8 Физика атомного ядра
  • 4.8.1 Строение ядра. Энергия связи атомного ядра. Ядерные силы
  • 4.8.2 Радиоактивность. Закон радиоактивного распада
  • 4.8.3 Радиоактивные излучения
  • 4.8.4 Правила смещения и радиоактивные ряды
  • 4.8.5 Экспериментальные методы ядерной физики. Методы регистрации частиц
  • 4.8.6 Физика элементарных частиц
  • 4.8.7 Космические лучи. Мезоны и гипероны. Классификация элементарных частиц
  • Содержание
  • 1.2.3 Работа сил в механике, энергия. Закон сохранения энергии в механике

    Работой постоянной силы F , когда тело движется поступательно и прямолинейно, при прохождении телом пути S, называют величину

    Работа, совершаемая силой F на конечном пути s , равна сумме элементарных работ на отдельных бесконечно малых участках пути; эта сумма приводится к интегралу:

    Силу F, действующую на материальную точку, называют консервативной , или потенциальной , если работа А , совершаемая этой силой при перемещении точки из одного произвольного положения в другое, не зависит от того, по какой траектории это перемещение произошло. Поэтому при перемещении материальной точки вдоль замкнутой траектории работа консервативной силы тождественно равна нулю. Таким образом, консервативные силы можно определить двумя способами:

    1) как силу, работа которой не зависит от пути, по которому частица переходит из одного положения в другое;

    2) как силу, работа которой по замкнутому пути равна нулю.

    Примерами консервативных сил могут служить силы всемирного тяготения, силы упругости, силы электростатического взаимодействия между заряженными телами.

    Все силы, не удовлетворяющие условиюконсервативности, называются неконсервативными. Характерным примером таких сил являются силы трения скольжения. Сила трения скольжения всегда направлена в сторону, противоположную направлению движения, так чтоcosα = -1. Поэтому работа силы трения скольжения вдоль замкнутой траектории всегда отрицательна и никогда не равна нулю.

    Для характеристики скорости совершения работы силой вводится понятие мощности. Мощностью N силы F называется физическая величина, численно равная работе, совершаемой этой силой за единицу времени:

    где v - скорость точки приложения силы.

    В механике различают два вида энергии, кинетическую и потенциальную. Кинетической энергией тела называют энергию Е K , являющуюся мерой его механического движения и измеряемую той работой, которую может совершить тело при его торможении до полной остановки. Найдем выражение для кинетической энергии твердого тела В, имеющего массу т и движущегося поступательно со скоростью v.

    Пусть тело В тормозится под действием некоторой силой F (в общем случае переменной) и на малом участке пути ds совершает элементарную работу dА = - F τ ds . По второму закону Ньютона - F τ = mdv / dt Следовательно, dA = - m (dv / dt ) ds = - m (ds / dt ) dv = - m v dv . Работа, совершаемая телом В до полной его остановки

    Данная формула справедлива для кинетической энергии материальной точки. Любую механическую систему можно рассматривать как систему материальных точек. Поэтому кинетическая энергия Е K механической системы равна сумме кинетических энергий всех п материальных точек, образующих эту систему:

    Е к = ∑ Е i = m i v i 2 /2

    где m i , v i - масса и скорость i -й материальной точки. Таким образом, кинетическая энергия системы полностью определяется величинами масс и скоростей движения. входящих в нее материальных точек. Она не зависит от того, каким образом части рассматриваемой системы приобрели данные значения скоростей. Кратко этот важный вывод можно сформулировать следующим образом: кинетическая энергия системы есть функция состояния ее движения.

    Если на систему материальных точек или тел действуют консервативные (потенциальные) силы, то можно ввести понятие потенциальной энергии этой системы. В самом деле, работа, совершаемая консервативными силами, не зависит от того, как было осуществлено это перемещение. Работа А 1-2 при перемещении системы из одной точки пространства, полностью определяется начальной и конечной местоположениями системы. Это можно выразить в форме

    А 1-2 = Еп 1 – Еп 2

    где Еп - некоторая функция состояния системы, зависящая только от координат всех материальных точек системы. Эту функцию называют потенциальной энергией системы. Отсюда следует, что работа консервативных сил, действующих на механическую систему, равна убыли потенциальной энергии этой системы. Из определения следует, что потенциальная энергия системы в произвольном состоянии равна работе, совершаемой консервативными силами при переводе системы из одного состояния в другое по условию задачи.

    Так, например, работа силы тяжести зависит только от разности высот начальной и конечной точек пути. Сила тяжести тела приложена к его центру тяжести. Поэтому работа силы тяжести при любом движении тела равна произведению этой силы на разность высот начального и конечного положений его центра тяжести. Отсюда следует, что работа силы тяжести вдоль замкнутой траектории центра тяжести тела равна нулю, т. е. что сила тяжести, действительно, является консервативной. Потенциальная энергия тела, поднятого на высоту H над поверхностью Земли равна

    Найдем потенциальную энергию упруго деформированного тела. Сила упругости F ynp , как известно из опыта, пропорциональна величине деформации х , т. е. F ynp , = - k х где k - коэффициент упругости, характеризующий упругие свойства тела, а знак минус показывает, что сила упругости направлена в сторону, противоположную направлению деформации: упруго деформированное тело стремится восстановить свои первоначальные форму и размеры.

    Элементарная работа, совершаемая силой F ynp при бесконечно малом изменении деформации тела на величину dx равна d А = (F ynp dx ) = - kxdx . Работа этой силы при конечном изменении деформации тела, например, при переводе его из недеформированного состояния (х =0) в состояние, соответствующее деформации х , равна

    Полной механической энергией системы называют величину E , равную сумме кинетической и потенциальной энергий этой системы:

    E = E K + E n .

    Полная механическая энергия системы - функция ее состояния, так как зависит только от координат, скоростей и масс всех малых частей (материальных точек) системы

    Найдем условие, которому должна удовлетворять система тел для того, чтобы ее полная механическая энергия не изменялась с течением времени. Если v - скорость i - й материальной точки с массой т и то ее кинетическая энергия E к i = m i v i 2 /2. Изменение этой энергии за малый промежуток времени dt , связанное с изменением скорости v , на dv i = a i dt (а i - ускорение рассматриваемой материальной точки), равно

    dE к i = m i /2[(dv i , v i ) + (v i ,dv i ,)] = m i (a i dt, v i ,) = (m i а i , v t dt) = (m i а i , dr i )

    где dr i = v i dt - приращение радиуса-вектора r i , материальной точки. По второму закону Ньютона m i а i = F i + f i , где F i и f i - результирующие, соответственно, консервативных и неконсервативных сил, действующих на i - ю материальную точку. Поэтому

    Первая сумма в правой части этого уравнения представляет собой суммарную работу dA , совершаемую всеми консервативными силами за промежуток времени dt . Эта работа равна убыли за то же время dt потенциальной энергии системы

    где Е= Е K + Е n - полная механическая энергия системы.

    Если внутренние силы взаимодействия между которыми консервативны, а все внешние силы - стационарны и консервативны,такую систему тел (материальных точек) называют консервативной системой ,. Для такой системы dA = d E = 0 и

    E = E K + E п = const,

    т. е. полная механическая энергия консервативной системы не изменяется с течением времени. Этот закон называют законом сохранения механической энергии . Он справедлив, для замкнутой консервативной системы, т е системы, на которую внешние силы не действуют, а все внутренние силы - консервативны.

    Рассмотрим применение закона сохранения механической энергии к расчету абсолютно упругого прямого центрального удара двух тел. Абсолютно упругим называют такой удар, в результате которого не происходит превращения механической энергии системы соударяющихся тел в другие виды энергии. Пусть два абсолютно упругих шара с массами m 1 и m 2 до удара (рисунок - 1.32, а) движутся поступательно со скоростями v 1 и v 2 , направленными в одну и ту же сторону вдоль линии их центров, причем v 1 > v 2 . Нужно найти скорости шаров u 1 и u 2 после соударения (рисунок - 1.32, б).

    Рисунок - 1.32

    В процессе удара систему соударяющихся тел можно считать замкнутой. Следовательно, для решения этой задачи можно воспользоваться законами сохранения механической энергии и импульса. Перед ударом и после его завершения соударяющиеся тела не деформированы, т. е. потенциальную энергию системы в этих двух состояниях можно считать одинаковой и равной нулю. Тогда из закона сохранения механической энергии имеем

    Совместное решение двух последних уравнений дает

    u 1 = / (m 1 +m 2 ),

    u 2 = / (m 1 +m 2 )

    т.е., после упругого соударения тела двигаются каждая со своей скоростью кинетической энергией Е 1 и Е 2 соответственно.

    Систему тел называют диссипативной, если ее механическая энергия постепенно уменьшается за счет преобразования в другие (немеханические) формы энергии. Этот процесс называют процессом диссипации (рассеяния) энергии . В качестве примера рассмотрим диссипацию энергии при абсолютно неупругом прямом центральном ударе двух поступательно движущихся тел.

    При абсолютно неупругом ударе происходит диссипация энергии. Изменение E полной механической энергии системы соударяющихся тел равно изменению их кинетической энергии

    После преобразований, рассеянная энергия равна:

    E =- m 1 m 2 (v 1 v 2 ) 2 /2(m 1 + m 2 )

    1) Кинетическая энергия.

    Если тело массой m движется со скоростью v, то оно обладает энергией ,

    Работа равна изменению кинетической энергии тела: .

    2) Потенциальная энергия.

    Любое тело массы m , находящееся под действием гравитации обладает энергией: ,

    где h – высота над условным нулевым уровнем, g – ускорение свободного падения.

    Потенциальной энергией так же обладает упруго деформированное тело. Если пружина жесткостью k деформирована на величину x , то она обладает энергией: ,

    Потенциальная энергия это энергия взаимодействия тел (или его частей).

    Отметим, что не всякое взаимодействие тел характеризуется потенциальной энергией. Есть особые силы, работа которых не зависит от формы траектории, а определяется только начальным и конечным положением тел (рис.). Такие силы называют консервативными . Например, к консервативным силам относятся сила тяжести, сила упругости, к неконсервативным – сила трения.

    Работа равна изменению потенциальной энергии со знаком минус:

    Единица измерения энергии – 1 Джоуль.

    Закон сохранения энергии.

    Рассмотрим консервативную механическую систему, т.е. такую систему в которой действуют только консервативные силы.

    Закон сохранения формулируется для полной энергии.

    Полной энергией механической системы называют сумму кинетических и потенциальных энергий тел, входящих в эту систему:

    Итак, в замкнутой консервативной механической системе полная энергия сохраняется .

    Или, в консервативных системах при отсутствии внешнего воздействия полная энергия остается постоянной .

    Часто потенциальная энергия является функцией координат. Изобразим на одной координатной плоскости графики полной энергии и потенциальной энергии. График потенциальной энергии может взрастать или убывать, а график полной энергии горизонтален, т.к. полная энергия постоянна (в консервативных системах).

    ABC – потенциальная яма.

    CDR – потенциальный барьер.

    Центральный удар шаров.

    Законы сохранения применяются для анализа и решения множества физических задач, одним из которых является удар тел.

    Удар – столкновение двух или более тел, при котором взаимодействие длится очень короткое время.

    При ударе между телами происходит перераспределение энергий и импульса. При этом часть механической энергии системы может перейти в немеханические.

    Рассмотрим предельные виды удара.

    1. Неупругий удар – удар, после которого тела движутся как единое целое, при этом часть механической энергии тратится на деформацию и переходит в немеханические виды (в тепловую). При неупругом ударе выполняется только закон сохранения импульса.
    2. Абсолютно упругий удар – удар, при котором механическая энергия не переходит в другие, немеханические, виды энергии. После удара тела полностью восстанавливают формы и размеры. Полная энергия системы сохраняется. При абсолютно упругом ударе выполняются и законы сохранения импульса и энергии.

    Рассмотрим центральный удар двух шаров.

    Удар называется центральным , если до удара шары движутся вдоль линии, проходящей через их центры масс.

    Пусть известны массы m 1 , m 2 и скорости шаров до удара: v 1 , v 2

    Похожие публикации