Экспертное сообщество по ремонту ванных комнат

Как трехфазный синхронный генератор превратить в однофазный. Преобразование асинхронного двигателя в генератор своими руками

(АГ) является наиболее распространенной электрической машиной переменного тока, применяемой преимуществен­но в качестве двигателя.
Только низковольтные АГ (до 500 В пи­тающего напряжения) мощностью от 0,12 до 400 кВт потребляют более 40% всей вырабатываемой в мире электроэнергии, а годовой их выпуск со­ставляет сотни миллионов, покрывая самые разнообразные потребности промышленного и сельскохозяйственного производства, судовых, авиаци­онных и транспортных систем, систем автоматики, военной и специальной техники.

Эти двигатели сравнительно просты по конструкции, весьма на­дежны в эксплуатации, имеют достаточно высокие энергетические показа­тели и невысокую стоимость. Именно поэтому непрерывно расширяется сфера использования асинхронных двигателей как в новых областях техники, так и взамен более сложных электрических машин различных конструкций.

Например, значительный интерес в последние годы вызывает приме­нение асинхронных двигателей в генераторном режиме для обеспечения питанием как потреби­телей трехфазного тока, так и потребителей постоянного тока через вы­прямительные устройства. В системах автоматического управления, в сле­дящем электроприводе, в вычислительных устройствах широко применя­ются асинхронные тахогенераторы с короткозамкнутым ротором для пре­образования угловой скорости в электрический сигнал.

Применение асинхронного режима генератора


В определенных условиях эксплуатации автономных источников электроэнергии применение асинхронный режим генератора оказывается предпочтительным или даже единственно возможным решением, как, например, в высокоскоростных передвижных электростанциях с безредукторным газотурбинным приво­дом с частотой вращения п = (9…15)10 3 об/мин. В работе описан АГ с массивным ферромагнитным ротором мощностью 1500 кВт при п = =12000 об/мин, предназначенный для автономного сварочного комплекса «Север». В данном случае массивный ротор с продольными пазами прямо­угольного сечения не содержит обмоток и выполняется из цельной сталь­ной поковки, что дает возможность непосредственного сочленения ротора двигателя в генераторном режиме с газотурбинным приводом при окружной скорости на поверхности ро­тора до 400 м/с. Для ротора с шихтованным сердечником и к.з. обмоткой типа «беличья клетка» допустимая окружная скорость не превышает 200 - 220 м/с.

Другим примером эффективного применения асинхронного двигателя в генераторном режиме является давнее их использование в мини-ГЭС при устойчивом режиме нагрузки.

Отличаются простотой эксплуатации и обслуживания, легко включаются на параллельную работу, а форма кривой выходного напря­жения у них ближе к синусоидальной, чем у СГ при работе на одну и ту же нагрузку. Кроме того, масса АГ мощностью 5-100 кВт примерно в 1,3 — 1,5 раза меньше массы СГ такой же мощности и они несут меньший объем обмоточных материалов. При этом в конструктивном отношении они ни­чем не отличаются от обычных АД и возможно их серийное производство на электромашиностроительных заводах, выпускающих асинхронные ма­шины.

Недостатки асинхронного режима генератора,асинхронного двигателя(АД)

Один из недостатков АД - это то, что они являются потребителями значительной реактивной мощности (50% и более от полной мощности), необходимой для создания магнитного поля в машине, которая должна по­ступать из при параллельной работе асинхронного двигателя в генераторном режиме с сетью или от другого ис­точника реактивной мощности (батарея конденсаторов (БК) или синхрон­ный компенсатор (СК)) при автономной работе АГ. В последнем случае наиболее эффективно включение батареи конденсаторов в цепь статора параллельно нагрузке хотя в принципе возможно ее включение в цепь ро­тора. Для улучшения эксплуатационных свойств асинхронного режима генератора в цепь статора допол­нительно могут включаться конденсаторы последовательно или парал­лельно с нагрузкой.

Во всех случаях автономной работы асинхронного двигателя в генераторном режиме источники реактивной мощ­ности (БК или СК) должны обеспечивать реактивной мощностью как АГ, так и нагрузку, имеющую, как правило, реактивную (индуктивную) со­ставляющую (соsφ н < 1, соsφ н > 0).

Масса и размеры конденсаторной батареи или синхронного компен­сатора могут превосходить массу асинхронного генератора и только при соsφ н =1 (чисто актив­ная нагрузка) размеры СК и масса БК сопоставимы с размером и массой АГ.

Другой, наиболее сложной проблемой является проблема стабилиза­ции напряжения и частоты автономно работающего АГ, имеющего «мяг­кую» внешнюю характеристику.

При использовании асинхронного режима генератора в составе автономной эта проблема ос­ложняется еще и нестабильностью частоты вращения ротора. Возможные и применяемые в настоящее способы регулирования напряжения асинхронном режиме генератора.

При проектировании АГ для оптимизационные расчеты следует вести по максимуму КПД в широком диапазоне изменения частоты враще­ния и нагрузки, а также по минимуму затрат с учетом всей схемы управле­ния и регулирования. Конструкция генераторов должна учитывать клима­тические условия работы ВЭУ, постоянно действующие механические усилия на элементы конструкции и особенно — мощные электродинамиче­ские и термические воздействия при переходных процессах, которые возникают при пусках, перерывах питания, выпадении из синхронизма, ко­ротких замыканиях и других, а также при значительных порывах ветра.

Устройство асинхронной машины,асинхронного генератора

Устройство асинхронной машины с короткозамкнутым ротором по­казано на примере двигателя серии АМ (рис. 5.1).

Основными частями АД являются неподвижный статор 10 и вра­щающийся внутри него ротор, отделенный от статора воздушным зазором. Для уменьшения вихревых токов сердечники ротора и статора набираются из отдельных листов, отштампованных из электротехнической стали тол­щиной 0,35 или 0,5 мм. Листы оксидируются (подвергаются термической обработке), что увеличивает их поверхностное сопротивление.
Сердечник статора встраивается в станину 12, являющуюся внешней частью машины. На внутренней поверхности сердечника имеются пазы, в которых уложена обмотка 14. Статорную обмотку чаще всего делают трехфазной двухслойной из отдельных катушек с укороченным шагом из изолированного медного провода. Начала и концы фаз обмотки выводят на зажимы коробки выводов и обозначают так:

начала - СС2, С 3 ;

концы - С 4, С5, Сб.

Обмотку статора можно соединить звездой (У) или треугольником (Д). Это дает возможность применять один и тот же двигатель при двух различных линейных напряжениях, находящихся в отношении напри­мер, 127/220 В или 220/380 В. При этом соединению У соответствует включение АД на высшее напряжение.

Сердечник ротора в собранном виде запрессовывается на вал 15 го­рячей посадкой и предохраняется от проворачивания при помощи шпонки. На внешней поверхности сердечник ротора имеет пазы для укладки обмот­ки 13. Обмотка ротора в наиболее распространенных АД представляет со­бой ряд медных или алюминиевых стержней, расположенных в пазах и замкнутых по торцам кольцами. В двигателях мощностью до 100 кВт и бо­лее обмотка ротора выполняется заливкой пазов расплавленным алюми­нием под давлением. Одновременно с обмоткой отливаются и за­мыкающие кольца вместе с вентиляционными крылатками 9. По форме та­кая обмотка напоминает «беличью клетку».

Двигатель с фазным ротором.Асинхронный режим генератор а.

Для специальных асинхронных двигателях обмотка ротора может выполняться по­добно статорной. Ротор с такой обмоткой помимо указанных частей имеет три укрепленных на валу контактных кольца, предназначенных для соеди­нения обмотки с внешней цепью. АД в этом случае называется двигателем с фазным ротором или с контактными кольцами.

Вал ротора 15 объединяет все элементы ротора и служит для соеди­нения асинхронного двигателя с исполнительным механизмом.

Воздушный зазор между ротором и статором составляет от 0,4 — 0,6 мм для машин малой мощности и до 1,5 мм у машин большой мощности. Подшипниковые щиты 4 и 16 двигателя служат опорой для подшипников ротора. Охлаждение асинхронного двигателя осуществляется по принципу самообдува вентилятором 5. Подшипники 2 и 3 закрыты снаружи крышка­ми 1 , имеющими лабиринтовые уплотнения. На корпусе статора устанав­ливается коробка 21с выводами 20 обмотки статора. На корпусе укрепля­ется табличка 17, на которой указываются основные данные АД. На рис.5.1 обозначено также: 6 — посадочное гнездо щита; 7 — кожух; 8 — корпус; 18 — лапа; 19 - вентиляционный канал.

В качестве генератора для ветряка было решено переделать асинхронный двигатель. Такая переделка очень проста и доступна, поэтому в самодельных конструкциях ветрогенераторов часто можно видеть генераторы сделанные из асинхронных двигателей.

Переделка заключается в проточке ротора под магниты, далее магниты обычно по шаблону приклеивают к ротору и заливают эпоксидной смолой чтобы не отлетели. Так-же обычно перематывают статор более толстым проводом чтобы уменьшить слишком большое напряжение и поднять силу тока. Но этот двигатель не хотелось перематывать и было решено оставить все как есть, только переделать ротор на магниты. В качестве донора был найден трехфазный асинхронный двигатель мощностью 1,32Кв. Ниже фото данного электродвигателя.

> Ротор электродвигателя был проточен на токарном станке на толщину магнитов. В этом роторе не применяется металлическая гильза, которую обычно вытачивают и надевают на ротор под магниты. Гильза нужна для усиления магнитной индукции, через нее магниты замыкают свои поля питая из под низа друг друга и магнитное поле не рассеивается, а идет все в статор. В этой конструкции применены достаточно сильные магниты размером 7,6*6мм в количестве 160 шт., которые и без гильзы обеспечат хорошую ЭДС.

>

> Сначала, перед наклейкой магнитов ротор был размечен на четыре полюса, и со скосом были расположены магниты. Двигатель был четырех-полюсной и так как статор не перематывался на роторе тоже должно быть четыре магнитных полюса. Каждый магнитный полюс чередуется, один полюс условно "север", второй полюс "юг". Магнитные полюса сделаны с промежутками, так в полюсах магниты сгруппированы плотнее. Магниты после размещения на роторе были замотаны скотчем для фиксации и залиты эпоксидной смолой.

После сборки ощущалось залипание ротора, при вращение вала чувствовались залипания. Было решено переделать ротор. Магниты были сбиты вместе с эпоксидной смолой и снова размещены, но теперь они более менее равномерно установлены по всему ротору, ниже фото ротора с магнитами перед заливкой эпоксидной смолой. После заливки залипание несколько снизилось и было замечено что немного упало напряжение при вращении генератора на одних и тех же оборотах и немного подрос ток.

>

После сборки готовый генератор было решено покрутить дрелью и что нибудь к ниму подключить в качестве нагрузки. Подключалась лампочка на 220 вольт 60 ватт, при 800-1000 об/м она горела в полный накал. Так-же для проверки на что способен генератор была подключена лампа мощностью 1 Кв, она горела в полнакала и сильнее дрель не осилила крутить генератор.

>

В холостую на максимальных оборотах дрели 2800 об/м напряжение генератора было более 400 вольт. При оборотах примерно 800 об/м напряжение 160 вольт. Так-же попробовали подключить кипятильник на 500 ватт, после минуты кручения вода в стакане стала горячей. Вот такие испытания прошел генератор, который был сделан из асинхронного двигателя.

>

После для генератора была сварена стойка с поворотной осью для крепления генератора и хвоста. Конструкция сделана по схеме с уводом ветроголовки от ветра методом складывания хвоста, поэтому генератор смещен от центра оси, а штырек позади, это шкворень, на который одевается хвост.

>

Здесь фото готового ветрогенератора. Ветрогенератор был установлен на девятиметровую мачту. Генератор при силе ветра выдавал напряжение холостого хода до 80 вольт. К нему пробовали подсоединять тенн на два киловатта, через некоторое время тенн стал теплым, значит ветрогенератор все-таки имеет какую-то мощность.

>

Потом был собран контроллер для ветрогенератора и через него подключен аккумулятор на зарядку. Зарядка была достаточно хорошим током, аккумулятор быстро зашумел, как будто его заряжают от зарядного устройства.

Пока к сожалению никаких подробных данных по мощности ветрогенератора нет, так-как пользователь разместивший свой ветрогенератор вот здесь

Не всегда покупка заводского генератора является целесообразной. Иногда проще использовать подручные материалы и инструменты, чтобы сделать его самостоятельно. Устройства мощностью до 1 кВт будет достаточно для подключения уличного освещения на даче или любых других бытовых приборов. Можно соорудить такой генератор из асинхронного двигателя.

Изготовление асинхронного генератора своими руками дает множество преимуществ. Это бесплатный источник электричества, который можно использовать в разных целях. К тому же сделать такую работу может даже начинающий мастер.

Конструктивно схема электрогенератора будет состоять из нескольких ключевых элементов:

Принцип работы устройства

Принцип работы самодельных генераторов переменного тока на 220 В ничем не отличается от устройств, которые применяются в промышленных целях. И те и другие перерабатывают кинетическую энергию в электрическую.

В конструкциях, изготовленных своими руками, сила ветра крутит ветряк, который закреплён на роторе. Таким образом, кинетическая энергия передаётся генератору. Он и производит электроэнергию. В качестве генератора зачастую используется переделанный асинхронный двигатель.

Вырабатываемая генератором электроэнергия передаётся в аккумуляторы. Последние должны оснащаться модулем контроля заряда. Из аккумуляторов электроэнергия поступает в инвертор постоянного напряжения. Таким образом, можно создать переменное напряжение. Оно будет подходить для использования в бытовых целях, то есть с параметрами 220 В и 50 Гц.

Чтобы преобразовать переменное напряжение в постоянное, необходимо установить специальный контроллер. Именно благодаря ему аккумуляторы заряжаются. Иногда инверторы могут выполнять функцию источника бесперебойного питания. То есть в случае отсутствия централизованного электричества или перебоев в его работе асинхронный генератор переменного тока можно использовать для бытовых целей, питания различных приборов, работающих на 220 В.

Необходимые материалы и инструменты

Для изготовления мотора-генератора своими руками достаточно иметь антисинхронный двигатель. Остальные материалы можно найти в хозяйстве или на специализированных рынках радиотехники.

Могут понадобиться такие инструменты и материалы:

Сначала необходимо определиться с желаемым итоговым результатом. Характеристики электродвигателя, выполняющего роль генератора, могут быть разными, и от этого зависит, сколько электроэнергии устройство будет вырабатывать за единицу времени.

Для производства среднего количества энергии генератор должен иметь приблизительно такие характеристики:

  1. Минимальная мощность установки - 1.3 кВт.
  2. Желательны неодимовые магниты в конструкции. Их функция заключается в обеспечении электромагнитной движущейся силы. Для этого может применяться и стальная гильза, которая устанавливается на ротор.
  3. Расположение магнитов на роторе должно соответствовать схеме. Это значит, что их полюсы должны быть развёрнуты в правильную сторону.
  4. Предварительно вал ротора нужно проточить и подогнать размеры под диаметр магнитов.
  5. При установке магнитов не всегда требуется переделывать обмотку. Если она состоит из проводов с большим сечением - ничего страшного, это только увеличит мощность. Самым лучшим вариантом обмотки будет устройство, имеющее шесть полюсов, провод с сечением не более 1.2 мм и максимум 24 витка на катушке.

Нюансы монтажа

Как правило, для изготовления ветро генератора из асинхронного двигателя своими руками применяется ветряк с тремя лопастями , которые в диаметре достигают двух метров. Если увеличить количество лопастей или их длину, то улучшение характеристик не произойдёт. Перед тем как выбирать модификацию устройства, тип, характеристики, габариты, необходимо осуществить правильный расчёт.

Подключать к электросети каждый из приборов нужно в определённом порядке. Сначала идут аккумуляторы, а потом уже и ветрогенератор. Вращаться вал электромотора может либо горизонтально, либо вертикально. Как правило, устанавливают в вертикальном положении, это связано с конструктивными особенностями. Для обеспечения защиты от влаги генератор оборудуют прокладками или колпаком.

Для установки мачты необходимо выбрать открытое место, где будет максимальное количество ветров. Высота монтажа генераторного устройства должна быть достаточно большой. Переделанный асинхронник в идеальном варианте устанавливается на высоте 15 метров, но на практике мачты более 7 метров никто не использует.

В качестве основного источника электрического питания дома устройство лучше не использовать. Такое тихоходное устройство следует устанавливать для страховки от ситуаций с перебоями в электричестве или для экономии семейного бюджета, поскольку счёт за централизованную подачу существенно уменьшается.

Стоит отметить, что установки подобного типа можно использовать не во всех регионах. Минимальная скорость ветра для целесообразности использования должна постоянно держаться на отметке 7 метров за секунду. Если этот показатель меньше, то и электроэнергии будет вырабатываться очень мало.

Перед установкой проводятся необходимые расчёты. В некоторых ситуациях могут возникнуть сложности с обработкой узлов асинхронного движка. Ветряк нельзя изготовить без соответствующих модулей, а также проведения предварительных испытаний устройства. Подключение такого оборудования осуществить невозможно.

Конечно, можно купить асинхронный генератор заводского производства, но вариант самостоятельного изготовления значительно экономнее и не занимает много времени. В процессе не должно возникнуть никаких сложностей даже у неопытного человека.

Для переделки коллекторного двигателя переменного тока необходимо подготовить некоторые инструменты. Выполнять работу нужно с учётом определённых правил:

Генератор можно взять и с других устройств, к примеру, от автомобиля ВАЗ. После этого требуется переходить к его монтажу на мачту. Следует помнить, что в случае использования ротора, работающего в короткозамкнутом режиме, устройство будет вырабатывать ток с высоким напряжением.

Для получения 220 вольт следует оснастить устройство понижающим трансформатором. Устройство не нужно подключать к электросети, поскольку оно работает по методу самозапитки.

Таким образом, сделать генератор из асинхронного двигателя не является сложной задачей даже для начинающего мастера. Если учесть все возможности устройства, то можно сделать вывод, что в определённых ситуациях оно поможет с перебоями электричества, а при установлении очень мощного ветрогенератора будет основным источником энергии в доме.

Идея иметь автономной источник электрической энергии и не зависеть от стационарной государственной сети волнует умы многих жителей сельской местности.

Реализовать ее довольно просто: нужен трехфазный асинхронный электродвигатель, который можно использовать даже со старого, списанного промышленного оборудования.

Генератор из асинхронного двигателя своими руками делается по одной из трех схем, публикуемых в этой статье. Он будет бесплатно и надежно преобразовывать механическую энергию в электричество.

Как подобрать электродвигатель

Чтобы исключить ошибки на стадии проекта необходимо уделить внимание конструкции приобретаемого двигателя, а также его электрическим характеристикам: потребляемой мощности, величине напряжения питания, числу оборотов ротора.

Асинхронные машины обратимы. Они способны работать в режиме:

· электродвигателя, когда на них подается внешнее напряжение;

· или генератора, если их ротор вращает источник механической энергии, например, водяное либо ветряное колесо, двигатель внутреннего сгорания.

Обращаем внимание на заводскую табличку, конструкцию ротора и статора. Учитываем их особенности при создании генератора.

Что надо знать о конструкции статора

У него на общем сердечнике магнитопровода намотаны три изолированных обмотки для питания от каждой фазы напряжения.

Их подключают одним из двух способов:

1. Звездой, когда все концы собраны в одну точку. На 3 начала и общий вывод концов подается напряжение по четырем проводам.

2. Треугольником - конец одной обмотоки подключен к началу другой так, что схема собрана кольцом и из нее выходят всего три провода.

Более подробно эта информация изложена в статье моего сайта о подключении трехфазного двигателя в бытовую однофазную сеть .

Особенности конструкции ротора

На нем тоже создан магнитопровод и три обмотки. Они соединяются одним из двух способов:

1. через контактные выводы у двигателя с фазным ротором;

2. накоротко замкнуты алюминиевой вставкой в конструкцию беличьего колеса - асинхронные машины.

Нам нужен ротор короткозамкнутый. Все схемы разработаны для него.

Конструкцию фазного ротора тоже можно использовать в качестве генератора. Но ее придется переделать: просто шунтируем все вывода между собой закоротками.

Как учесть электрические характеристики двигателя

На работу генератора повлияют:

1. Диаметр провода обмотки. От него напрямую зависит нагрев конструкции и величина приложенной мощности.

2. Расчетная скорость вращения ротора, указываемая числом оборотов.

3. Способ соединения обмоток в звезду или треугольник.

4. Величина потерь энергии, определяемая КПД и косинусом φ.

Их смотрим на табличке или вычисляем косвенными методами.

Как заставить электродвигатель перейти в режим генератора

Необходимо выполнить два действия:

1. Раскрутить ротор от источника посторонней механической мощности.

2. Возбудить в обмотках электромагнитное поле.

Если с первым пунктом все понятно, то для второго достаточно подключить к обмоткам батарею конденсаторов, создав емкостную нагрузку определенной величины.

Для этого вопроса разработано несколько вариантов схем.

Полная звезда

Конденсаторы включают между каждой парой начал обмоток.

Упрощенная звезда

В этой схеме пусковой и рабочий конденсаторы подключаются своими выключателями.

Схема треугольника

Конденсаторы включены параллельно каждой обмотке. На выходных клеммах создается линейное напряжение 220 вольт.

Какие нужны номиналы конденсаторов

Проще всего использовать бумажные конденсаторы с напряжением от 500 вольт и выше. Электролитические модели лучше не применять: они могут закипеть и взорваться.

Формула определения емкости имеет вид: С=Q/2π∙f∙U2.

В ней Q - реактивная мощность, f - частота, U - напряжение.

Пенсионер мастерит ветряки и экономит на электроэнергии

Пенсионер из Амурской области решил в одиночку бороться с повышением тарифов на электроэнергию. Желание сделать почти невозможное возникло после того, как пришли очередные счета за коммунальные услуги.

Тогда бывший энергетик составил собственный план электрификации всего участка. Теперь наверху крутятся лопасти, внизу загораются лампочки. О том, как ветер принёс перемены

Асинхронный электродвигатель в качестве генератора

Работа асинхронного электродвигателя в генераторном режиме

В статье рассказано о том, как построить трёхфазный(однофазный) генератор 220/380 В на базе асинхронного электродвигателя переменного тока.

Трехфазный асинхронный электродвигатель, изобретённый в конце 19-го века русским учёным-электротехником М.О. Доливо-Добровольским, получил в настоящее время преимущественное распространение и в промышленности, и в сельском хозяйстве, а также в быту. Асинхронные электродвигатели–самые простые и надёжные в эксплуатации. Поэтому во всех случаях, когда это допустимо по условиям электропривода и нет необходимости в компенсации реактивной мощности, следует применять асинхронные электродвигатели переменного тока.

Различают два основных вида асинхронных двигателей: с короткозамкнутым ротором и с ф азным ротором . Асинхронный короткозамкнутый электродвигатель состоит из неподвижной части - статора и подвижной части - ротора, вращающегося в подшипниках, укреплённых в двух щитах двигателя. Сердечники статора и ротора набраны из отдельных изолированных один от другого листов электротехнической стали. В пазы сердечника статора уложена обмотка, выполненная из изолированного провода. В пазы сердечника ротора укладывают стержневую обмотку или заливают расплавленный алюминий. Кольца-перемычки накоротко замыкают обмотку ротора по концам (отсюда и название - короткозамкнутый). В отличие от короткозамкнутого ротора, в пазах фазного ротора размещают обмотку, выполненную по типу обмотки статора. Концы обмотки подводят к контактным кольцам, укреплённым на валу. По кольцам скользят щетки, соединяя обмотку с пусковым или регулировочным реостатом. Асинхронные электродвигатели с фазным ротором являются более дорогостоящими устройствами, требуют квалифицированного обслуживания, менее надёжны, а потому применяются только в тех отраслях производства, в которых без них обойтись нельзя. По этой причине они мало распространены, и мы их в дальнейшем рассматривать не будем.

По обмотке статора, включенной в трехфазную цепь, протекает ток, создающий вращающее магнитное поле. Магнитные силовые линии вращающегося поля статора пересекают стержни обмотки ротора и индуктируют в них электродвижущую силу (ЭДС). Под действием этой ЭДС в замкнутых накоротко стержнях ротора протекает ток. Вокруг стержней возникают магнитные потоки, создающие общее магнитное поле ротора, которое, взаимодействуя с вращающим магнитным полем статора, создает усилие, заставляющее ротор вращаться в направлении вращения магнитного поля статора. Частота вращения ротора несколько меньше частоты вращения магнитного поля, создаваемого обмоткой статора. Этот показатель характеризуется скольжением S и находиться для большинства двигателей в пределах от 2 до 10%.

В промышленных установках наиболее часто используются трёхфазные асинхронные электродвигатели , которые выпускают в виде унифицированных серий. К ним относится единая серия 4А с диапазоном номинальной мощности от 0,06 до 400 кВт, машины которой отличаются большой надёжностью, хорошими эксплуатационными качествами и соответствуют уровню мировых стандартов.

Автономные асинхронные генераторы - трёхфазные машины, преобразующие механическую энергию первичного двигателя в электрическую энергию переменного тока. Их несомненным достоинством перед другими видами генераторов являются отсутствие коллекторно-щеточного механизма и, как следствие этого, большая долговечность и надежность. Если отключенный от сети асинхронный двигатель привести во вращение от какого-либо первичного двигателя, то в соответствии с принципом обратимости электрических машин при достижении синхронной частоты вращения, на зажимах статорной обмотки под действием остаточного магнитного поля образуется некоторая ЭДС. Если теперь к зажимам статорной обмотки подключить батарею конденсаторов С, то в обмотках статора потечёт опережающий ёмкостный ток, являющийся в данном случае намагничивающим. Ёмкость батареи С должна превышать некоторое критическое значение С0, зависящее от параметров автономного асинхронного генератора: только в этом случае происходит самовозбуждение генератора и на обмотках статора устанавливается трёхфазная симметричная система напряжений. Значение напряжения зависит, в конечном счёте, от характеристики машины и ёмкости конденсаторов. Таким образом, асинхронный короткозамкнутый электродвигатель может быть превращен в асинхронный генератор.

Стандартная схема включения асинхронного электродвигателя в качестве генератора.

Можно подобрать емкость так, чтобы номинальное напряжение и мощность асинхронного генератора равнялись соответственно напряжению и мощности при работе его в качестве электродвигателя.

В таблице 1 приведены емкости конденсаторов для возбуждения асинхронных генераторов (U=380 В, 750….1500 об/мин). Здесь реактивная мощность Q определена по формуле:

Q = 0,314· U2 · C · 10-6,

где С - ёмкость конденсаторов, мкФ.

Мощность генератора,кВ·А

Холостой ход

ёмкость, мкФ

реактивная мощность, квар

ёмкость, мкФ

реактивная мощность, квар

ёмкость, мкФ

реактивная мощность, квар

Как видно из приведённых данных, индуктивная нагрузка на асинхронный генератор, понижающая коэффициент мощности, вызывает резкое увеличение потребной ёмкости. Для поддержания напряжения постоянным с увеличением нагрузки необходимо увеличивать и ёмкость конденсаторов, то есть подключать дополнительные конденсаторы. Это обстоятельство необходимо рассматривать как недостаток асинхронного генератора.

Частота вращения асинхронного генератора в нормальном режиме должна превышать асинхронную на величину скольжения S = 2…10%, и соответствовать синхронной частоте. Не выполнение данного условия приведёт к тому, что частота генерируемого напряжения может отличаться от промышленной частоты 50 Гц, что приведёт к неустойчивой работе частото-зависимых потребителей электроэнергии: электронасосов, стиральных машин, устройств с трансформаторным входом. Особенно опасно снижение генерируемой частоты, так как в этом случае понижается индуктивное сопротивление обмоток электродвигателей, трансформаторов, что может стать причиной их повышенного нагрева и преждевременного выхода из строя. В качестве асинхронного генератора может быть использован обычный асинхронный короткозамкнутый электродвигатель соответствующей мощности без каких-либо переделок. Мощность электродвигателя - генератора определяется мощностью подключаемых устройств. Наиболее энергоёмкими из них являются:

· бытовые сварочные трансформаторы;

· электропилы, электрофуганки, зернодробилки (мощность 0,3…3 кВт);

· электропечи типа "Россиянка", "Мечта" мощностью до 2 кВт;

· электроутюги (мощность 850…1000 Вт).

Особо хочу остановиться на эксплуатации бытовых сварочных трансформаторов. Их подключение к автономному источнику электроэнергии наиболее желательно, т.к. при работе от промышленной сети они создают целый ряд неудобств для других потребителей электроэнергии. Если бытовой сварочный трансформатор рассчитан на работу с электродами диаметром 2…3 мм, то его полная мощность составляет примерно 4…6 кВт, мощность асинхронного генератора для его питания должна быть в пределах 5…7 кВт. Если бытовой сварочный трансформатор допускает работу с электродами диаметром 4 мм, то в самом тяжелом режиме - "резки" металла, потребляемая им полная мощность может достигать 10…12 кВт, соответственно мощность асинхронного генератора должна находиться в пределах 11…13 кВт.

В качестве трёхфазной батареи конденсаторов хорошо использовать так называемые ком-пенсаторы реактивной мощности, предназначенные для улучшения соsφ в промышленных осветительных сетях. Их типовое обозначение: КМ1-0,22-4,5-3У3 или КМ2-0,22-9-3У3, которое расшифровывается следующим образом. КМ - косинусные конденсаторы с пропиткой минеральным маслом, первая цифра-габарит (1 или 2), затем напряжение (0,22 кВ), мощность (4,5 или 9 квар), затем цифра 3 или 2 означает трёхфазное или однофазное исполнение, У3 (умеренный климат третьей категории).

В случае самостоятельного изготовления батареи, следует использовать конденсаторы типа МБГО, МБГП, МБГТ, К-42-4 и др. на рабочее напряжение не менее 600 В. Электролитические конденсаторы применять нельзя.

Рассмотренный выше вариант подключения трёхфазного электродвигателя в качестве генератора можно считать классическим, но не единственным. Существуют и другие способы, которые так же хорошо зарекомендовали себя на практике. Например, когда батарея конденсаторов подключается к одной или двум обмоткам электродвигателя-генератора.

Двухфазный режим асинхронного генератора.


Рис.2 Двухфазный режим асинхронного генератора.

Такую схему следует использовать тогда, когда нет необходимости в получении трёхфазного напряжения. Этот вариант включения уменьшает рабочую ёмкость конденсаторов, снижает нагрузку на первичный механический двигатель в режиме холостого хода и т.о. экономит "драгоценное" топливо.

В качестве маломощных генераторов, вырабатывающих переменное однофазное напряжение 220 В, можно использовать однофазные асинхронные короткозамкнутые электродвигатели бытового назначения: от стиральных машин типа "Ока", "Волга", поливальных насосов "Агидель", "БЦН" и пр. У них конденсаторная батарея может подключаться параллельно рабочей обмотке, либо использовать уже имеющийся фазосдвигающий конденсатор, подключенный к пусковой обмотке. Емкость этого конденсатора, возможно, следует несколько увеличить. Его величина будет определяться характером нагрузки, подключаемой к генератору: для активной нагрузки (электропечи, лампочки освещения, электропаяльники) требуется небольшая емкость, индуктивной (электродвигатели, телевизоры, холодильники) - больше.

Рис.3 Маломощный генератор из однофазного асинхронного двигателя.

Теперь несколько слов о первичном механическом двигателе, который будет приводить во вращение генератор. Как известно, любое преобразование энергии связано с её неизбежными потерями. Их величина определяется КПД устройства. Поэтому мощность механического двигателя должна превышать мощность асинхронного генератора на 50…100%. Например, при мощности асинхронного генератора 5 кВт, мощность механического двигателя должна быть 7,5…10 кВт. С помощью передаточного механизма добиваются согласования оборотов механического двигателя и генератора так, чтобы рабочий режим генератора устанавливался на средних оборотах механического двигателя. При необходимости, можно кратковременно увеличить мощность генератора, повышая обороты механического двигателя.

Каждая автономная электростанция должна содержать необходимый минимум навесного оборудования: вольтметр переменного тока (со шкалой до 500 В), частотомер (желательно) и три выключателя. Один выключатель подключает нагрузку к генератору, два других - коммутируют цепь возбуждения. Наличие выключателей в цепи возбуждения облегчает запуск механического двигателя, а также позволяет быстро снизить температуру обмоток генератора, после окончания работы – ротор невозбужденного генератора еще некоторое время вращают от механического двигателя. Эта процедура продлевает активный срок службы обмоток генератора.

Если с помощью генератора предполагается запитывать оборудование, которое в обычном режиме подключается к сети переменного тока (например, освещение жилого дома, бытовые электроприборы), то необходимо предусмотреть двухфазный рубильник, который в период работы генератора будет отключать данное оборудование от промышленной сети. Отключать надо оба провода: "фазу" и "ноль".

В заключение несколько общих советов.

1. Генератор переменного тока является устройством повышенной опасности. Применяйте напряжение 380 В только в случае крайней необходимости, во всех остальных случаях пользуйтесь напряжением 220 В.

2. По требованиям техники безопасности электрогенератор необходимо оборудовать заземлением.

3. Обратите внимание на тепловой режим генератора. Он "не любит" холостого хода. Снизить тепловую нагрузку можно более тщательным подбором емкости возбуждающих конденсаторов.

4. Не ошибитесь с мощностью электрического тока, вырабатываемого генератором. Если при работе трёхфазного генератора используется одна фаза, то её мощность будет составлять 1/3 общей мощности генератора, если две фазы - 2/3 общей мощности генератора.

5. Частоту переменного тока, вырабатываемого генератором, можно косвенно контролировать по выходному напряжению, которое в режиме "холостого хода" должно на 4…6 % превышать промышленное значение 220/380 В.

Похожие публикации