Экспертное сообщество по ремонту ванных комнат

Как называется система блоков для подъема грузов. Блоки

4.1. Элементы статики

4.1.7. Некоторые простые механизмы: блоки

Устройства, предназначенные для перемещения (подъема, опускания) грузов с помощью колеса и перекинутой через него нити, к которой приложена некоторая сила, называются блоками . Различают неподвижные и подвижные блоки.

Блоки предназначены для перемещения груза весом P → c помощью силы F → , приложенной к веревке, перекинутой через колесо.

Для любых типов блоков (неподвижных и подвижных) выполняется условие равновесия:

d 1 F = d 2 P ,

где d 1 - плечо силы F → , приложенной к веревке; d 2 - плечо силы P → (веса груза, перемещаемого при помощи данного блока).

В неподвижном блоке (рис. 4.8) плечи сил F → и P → одинаковы и равны радиусу блока:

d 1 = d 2 = R ,

поэтому модули сил равны между собой:

F = P .

Рис. 4.8

С помощью неподвижного блока тело весом P → можно переместить, прикладывая силу F → , величина которой совпадает с величиной веса груза.

В подвижном блоке (рис. 4.9) плечи сил F → и P → различны:

d 1 = 2R и d 2 = R ,

где d 1 - плечо силы F → , приложенной к веревке; d 2 - плечо силы P → (веса груза, перемещаемого при помощи данного блока),

поэтому модули сил подчиняются равенству:

Рис. 4.9

С помощью подвижного блока тело весом P → можно переместить, прикладывая силу F → , величина которой вдвое меньше величины веса груза.

Блоки позволяют переместить тело на некоторое расстояние:

  • неподвижный блок не дает выиг­рыша в силе; он лишь изменяет направление приложенной силы;
  • подвижный блок дает выигрыш в силе в 2 раза.

Однако и подвижный, и неподвижный блоки не дают выигрыша в работе : во сколько раз выигрываем в силе, во столько раз проигрываем в расстоянии («золотое правило» механики).

Пример 22. Система состоит из двух невесомых блоков: одного подвижного и од­ного неподвижного. Груз массой 0,40 кг подвешен к оси подвижного блока и касается пола. К свободному концу веревки, перекинутой через неподвижный блок, прикладывают некоторую силу так, как показано на рисунке. Под действием этой силы груз поднимается из состояния покоя на высоту 4,0 м за 2,0 с. Найти модуль силы, приложенной к веревке.

2 T → ′ + P → = m a → ,

2 T ′ − m g = m a ,

a = 2 F − m g m .

Пройденный грузом путь совпадает с его высотой над поверхностью пола и связан с временем его движения t формулой

или с учетом выражения для модуля ускорения

h = a t 2 2 = (2 F − m g) t 2 2 m .

Выразим отсюда искомую силу:

F = m (h t 2 + g 2)

и рассчитаем ее значение:

F = 0,40 (4,0 (2,0) 2 + 10 2) = 2,4 Н.

Пример 23. Система состоит из двух невесомых блоков: одного подвижного и одного неподвижного. Некоторый груз подвешен к оси неподвижного блока так, как показано на рисунке. Под действием постоянной силы, приложенной к свободному концу веревки, груз начинает двигаться с постоянным ускорением и перемещается вверх на расстояние 3,0 м за 2,0 с. За время движения груза приложенная сила развивает среднюю мощность 12 Вт. Найти массу груза.

Решение . Силы, действующие на подвижный и неподвижный блоки, показаны на рисунке.

На неподвижный блок со стороны веревки действуют две силы T → (по обе стороны от блока); под действием указанных сил поступательное движение блока отсутствует. Каждая из указанных сил равна силе F → , приложенной к концу веревки:

На подвижный блок действуют три силы: две силы натяжения веревки T → ′ (по обе стороны от блока) и вес груза P → = m g → ; под действием указанных сил блок (вместе с подвешенным к нему грузом) движется вверх с ускорением.

Запишем второй закон Ньютона для подвижного блока в виде:

2 T → ′ + P → = m a → ,

или в проекции на координатную ось, направленную вертикально вверх,

2 T ′ − m g = m a ,

где T ′ - модуль силы натяжения веревки; m - масса груза (масса подвижного блока с грузом); g - модуль ускорения свободного падения; a - модуль ускорения блока (груз имеет такое же ускорение, поэтому далее будем говорить об ускорении груза).

Модуль силы натяжения веревки T ′ равен модулю силы T :

поэтому модуль ускорения груза определяется выражением

a = 2 F − m g m .

С другой стороны, ускорение груза определяется формулой для пройденного пути:

где t - время движения груза.

Равенство

2 F − m g m = 2 S t 2

позволяет получить выражение для модуля приложенной силы:

F = m (S t 2 + g 2) .

Груз движется равноускоренно, поэтому модуль его скорости определяется выражением

v = at ,

а средняя скорость движения -

〈 v 〉 = S t = a t 2 .

Величина средней мощности, развиваемой приложенной силой, определяется формулой

〈 N 〉 = F 〈 v 〉 ,

или с учетом выражений для модуля силы и средней скорости:

〈 N 〉 = m a (2 S + g t 2) 4 t .

Отсюда выразим искомую массу:

m = 4 t 〈 N 〉 a (2 S + g t 2) .

Подставим в полученную формулу выражение для ускорения (a = 2S /t 2):

m = 2 t 3 〈 N 〉 S (2 S + g t 2)

и произведем расчет:

m = 2 ⋅ (2,0) 3 ⋅ 12 3,0 (2 ⋅ 3,0 + 10 ⋅ (2,0) 2) ≈ 1,4 кг.

Полиспаст - система подвижных и неподвижных блоков, соединенных гибкой связью (канаты, цепи) используемая для увеличения силы или скорости подъема грузов. Используется полиспаст в случаях, если необходимо прилагая минимальные усилия поднять или переместить тяжелый груз, обеспечить натяжение и т.п. Простейших полиспаст состоит всего из одного блока и каната, при этом позволяет в два раза снизить тяговое усилие, необходимое для подъема груза.

Обычно в грузоподъемных механизмах применяют силовые полиспасты, позволяющие уменьшить натяжение каната, момент от веса груза на барабане и передаточное число механизма (тали, лебедки). Скоростные полиспасты, позволяющие получить выигрыш в скорости перемещения груза при малых скоростях приводного элемента. Они применяются значительно реже и используются в гидравлических или пневматических подъемниках, погрузчиках, механизмах выдвижения телескопических стрел кранов.

Основной характеристикой полиспаста является кратность. Это отношение числа ветвей гибкого органа, на котором подвешен груз, к числу ветвей наматываемых на барабан (для силовых полиспастов), либо отношение скорости ведущего конца гибкого органа к ведомому (для скоростных полиспастов). Условно говоря, кратность это теоретически рассчитанный коэффициент выигрыша в силе или скорости при использовании полиспаста. Изменение кратности полиспаста происходит путем введения или удаления из системы дополнительных блоков, при этом конец каната при четной кратности крепится на неподвижном элементе конструкции, а при нечетной кратности - на крюковой обойме.

В зависимости от количества ветвей каната, закрепленных на барабане грузоподъемного механизма, можно выделить одинарные (простые) и сдвоенные полиспасты. В одинарных полиспастах, при наматывании или сматывании гибкого элемента вследствие его перемещения вдоль оси барабана, создается нежелательное изменение нагрузки на опоры барабана. Также в случае отсутствия в системе свободных блоков (канат с блока крюковой подвески непосредственно переходит на барабан) происходит перемещение груза не только в вертикальной, но и в горизонтальной плоскости.

Для обеспечения строго вертикального подъема груза применяют сдвоенные полиспасты, (состоящие из двух одинарных), в этом случае на барабане закрепляются оба конца каната. Для обеспечения нормального положения крюковой подвески при неравномерной вытяжке гибкого элемента обоих полиспастов применяют балансир или уравнительные блоки. Такие полиспасты применяют в основном в мостовых и козловых кранах, а также в тяжелых башенных кранах для того, чтобы можно было использовать две стандартные грузовые лебедки вместо одной крупногабаритной большой мощности, а также для получения двух или трех скоростей подъема груза.

В силовых полиспастах при увеличении кратности можно использовать канаты уменьшенного диаметра, и как следствие уменьшить диаметр барабана и блоков, снизить массу и габариты системы в целом. Увеличение кратности позволяет снизить передаточное число редуктора, но одновременно требует большей длины каната и канатоемкости барабана.

Скоростные полиспасты отличаются от силовых тем, что в них рабочая сила, обычно развиваемая гидравлическим или пневматическим цилиндром, прикладывается к подвижной обойме, а груз подвешивается к свободному концу каната или цепи. Выигрыш в скорости при использовании такого полиспаста получается в результате увеличения высоты подъёма груза.

При использовании полиспастов следует учитывать, что используемые в системе элементы не являются абсолютно гибкими телами, а имеют определенную жесткость, поэтому набегающая ветвь не сразу ложится в ручей блока, а сбегающая ветвь не сразу выпрямляется. Это наиболее заметно при использовании стальных канатов.

Подвижный блок отличается от неподвижного тем, что его ось не закреплена, и он может подниматься и опускаться вместе с грузом.

Рисунок 1. Подвижный блок

Как и неподвижный блок, подвижный блок состоит всё из того же колеса с желобом для троса. Однако здесь закреплен один конец троса, а колесо подвижно. Колесо движется вместе с грузом.

Как заметил ещё Архимед, подвижный блок по сути является рычагом и работает по тому же принципу, давая выигрыш в силе за счёт разницы плеч.

Рисунок 2. Силы и плечи сил в подвижном блоке

Подвижный блок перемещается вместе с грузом, он как бы лежит на веревке. В таком случае точка опоры в каждый момент времени будет находиться в месте соприкосновения блока с веревкой с одной стороны, воздействие груза будет приложено к центру блока, где он и крепится на оси, а сила тяги будет приложена в месте соприкосновения с веревкой с другой стороны блока. То есть плечом веса тела будет радиус блока, а плечом силы нашей тяги -- диаметр. Правило моментов в этом случае будет иметь вид:

$$mgr = F \cdot 2r \Rightarrow F = mg/2$$

Таким образом, подвижный блок дает выигрыш в силе в два раза.

Обычно на практике применяют комбинацию неподвижного блока с подвижным (рис. 3). Неподвижный блок применяется только для удобства. Он, изменяет направление действия силы, позволяет, например, поднимать груз, стоя на земле, а подвижный блок обеспечивает выигрыш в силе.

Рисунок 3. Комбинация неподвижного и подвижного блоков

Мы рассмотрели идеальные блоки, то есть такие, в которых не учитывалось действие сил трения. Для реальных же блоков необходимо вводить поправочные коэффициенты. Используют такие формулы:

Неподвижный блок

$F = f 1/2 mg $

В этих формулах: $F$ - прилагаемое внешнее усилие (обычно это сила рук человека), $m$ - масса груза, $g$ - коэффициент силы тяжести, $f$ - коэффициент сопротивления в блоке (для цепей примерно 1,05, а для верёвок 1,1).

С помощью системы из подвижного и неподвижного блоков грузчик поднимает ящик с инструментами на высоту $S_1$ = 7 м, прикладывая силу $F$ = 160 Н. Какова масса ящика, и сколько метров верёвки придётся выбрать, пока груз поднимется? Какую работу выполнит в результате грузчик? Сравните её с работой, выполненной над грузом по его перемещению. Трением и массой подвижного блока пренебречь.

$m, S_2 , A_1 , A_2$ - ?

Подвижный блок даёт двойной выигрыш в силе и двойной проигрыш в перемещении. Неподвижный блок не даёт выигрыша в силе, но меняет её направление. Таким образом, приложенная сила будет вдвое меньше веса груза: $F = 1/2P = 1/2mg$, откуда находим массу ящика: $m=\frac{2F}{g}=\frac{2\cdot 160}{9,8}=32,65\ кг$

Перемещение груза будет вдвое меньше, чем длина выбранной верёвки:

Выполненная грузчиком работа равна произведению приложенного усилия на перемещение груза: $A_2=F\cdot S_2=160\cdot 14=2240\ Дж\ $.

Работа, выполненная над грузом:

Ответ: Масса ящика 32,65 кГ. Длина выбранной верёвки 14 м. Выполненная работа равна 2240 Дж и не зависит от способа подъёма груза, а только от массы груза и высоты подъёма.

Задача 2

Какой груз можно поднять с помощью подвижного блока весом 20 Н, если тянуть веревку с силой 154 Н?

Запишем правило моментов для подвижного блока: $F = f 1/2 (P+ Р_Б)$, где $f$ - поправочный коэффициент для верёвки.

Тогда $P=2\frac{F}{f}-P_Б=2\cdot \frac{154}{1,1}-20=260\ Н$

Ответ: Вес груза 260 Н.

Блок представляет собой устройство, имеющее форму колеса с желобом, по которому пропускают веревку, трос или цепь. Различают два основных вида блоков - подвижный и неподвижный. У неподвижного блока ось закреплена и при подъеме грузов не поднимается и не опускается (рис. 54), а у подвижного блока ось перемещается вместе с грузом (рис. 55).

Неподвижный блок не дает выигрыша в силе. Его применяют для того, чтобы изменить направление действия силы. Так, например, прикладывая к веревке, перекинутой через такой блок, силу, направленную вниз, мы заставляем груз подниматься вверх (см. Рис. 54). Иначе обстоит дело с подвижным блоком. Этот блок позволяет небольшой силой уравновесить силу, в 2 раза большую. Для доказательства этого обратимся к рисунку 56. Прикладывая силу F , мы стремимся повернуть блок вокруг оси, проходящей через точку О . Момент этой силы равен произведению Fl , где l - плечо силы F , равное диаметру блока ОВ . Одновременно с этим прикрепленный к блоку груз своим весом Р создает момент, равный, где - плечо силы Р , равное радиусу блока ОА . Согласно правилу моментов (21.2)

что и требовалось доказать.

Из формулы (22.2) следует, что P/F = 2. Это означает, что выигрыш, в силе, получаемый с помощью подвижного блока, равен 2 . Опыт, изображенный на рисунке 57, подтверждает этот вывод.

На практике часто применяют комбинацию подвижного блока с неподвижным (рис. 58). Это позволяет изменить направление силового воздействия с одновременным двукратным выигрышем в силе.

Для получения большего выигрыша в силе применяют грузоподъемный механизм, называемый полиспастом . Греческое слово «полиспаст» образовано из двух корней: «поли» - много и «спао» - тяну, так что в целом получается «многотяг».

Полиспаст представляет собой комбинацию из двух обойм, одна из которых состоит из трех неподвижных блоков, а другая - из трех подвижных блоков (рис. 59). Поскольку каждый из подвижных блоков удваивает силу тяги, то в целом полиспаст дает шестикратный выигрыш в силе.

1. Какие два вида блоков вы знаете? 2. Чем отличается подвижный блок от неподвижного? 3. Для какой цели применяют неподвижный блок? 4. Для чего используют подвижный блок? 5. Что представляет собой полиспаст? Какой выигрыш в силе он дает?

Ось которого закреплена при подъеме грузов, не поднимается и не опускается. Представляет собой колесо с желобом по окружности, вращающееся вокруг своей оси. Жёлоб предназначен для каната , цепи , ремня и т. п. Если ось блока помещается в обоймах, прикреплённых на балке или стене, такой блок называется неподвижным (то есть ось блока закреплена); если же к этим обоймам прикрепляется груз, и блок вместе с ними может двигаться, то такой блок называется подвижным.

Неподвижный блок употребляется для подъёма небольших грузов или для изменения направления силы.

Условие равновесия блока:

F = f m g {\displaystyle ~F=fmg} , где

F {\displaystyle F} - прилагаемое внешнее усилие, m {\displaystyle m} - масса груза, g {\displaystyle g} - ускорение свободного падения, f {\displaystyle f} - коэффициент сопротивления в блоке (для цепей примерно 1,05, а для верёвок - 1,1).

При отсутствии трения для подъема нужна сила, равная весу груза.

Подвижный блок имеет свободную ось и предназначен для изменения величины прилагаемых усилий. Если концы веревки, обхватывающей блок, составляют с горизонтом равные между собой углы, то действующая на груз сила относится к его весу, как радиус блока к хорде дуги, обхваченной канатом; отсюда, если веревки параллельны (то есть когда дуга, обхватываемая веревкой, равна полуокружности), то для подъёма груза потребуется сила вдвое меньше, чем вес груза, то есть:

F = 1 2 f m g {\displaystyle ~F={1 \over {2}}fmg}

При этом груз пройдёт расстояние, вдвое меньшее пройденного точкой приложения силы F, соответственно, выигрыш в силе подвижного блока равен 2.

Фактически, любой блок представляет собой рычаг , в случае неподвижного блока - равноплечий, в случае подвижного - с соотношением плеч 1 к 2. Как и для всякого другого рычага, для блока справедливо правило: Во сколько раз выигрываем в усилии, во столько же раз проигрываем в расстоянии . Иными словами, работа , совершаемая при перемещении груза на какое-либо расстояние без использования блока, равна работе, затрачиваемой при перемещении груза на то же самое расстояние с применением блока при условии отсутствия трения. В реальном блоке всегда присутствуют некоторые потери.

Также используется система, состоящая из комбинации нескольких подвижных и неподвижных блоков. Такая система называется полиспаст . Простейшая такая система изображена на рисунке и даёт выигрыш в силе в 2 раза.

В отличие от шкива , блок вращается на оси свободно и обеспечивает исключительно изменение направления движения ремня или каната, не передавая усилия с оси на ремень или с ремня на ось.

Похожие публикации