Экспертное сообщество по ремонту ванных комнат

Гэс какие бывают. Основные типы гидроэлектростанций

ВВЕДЕНИЕ

На сегодняшний день существуют различные виды получения электроэнергии, они различаются использованием разных видов сырья. Существуют возобновляемые источники энергии и не возобновляемые. В этом реферате будет разобран один вид получения электроэнергии на гидроэлектростанции, которая использует в качестве сырья возобновляемый источник энергии.

ОБЩЕЕ ПОНЯТИЕ О ГЭС

Гидроэлектростанция (ГЭС) электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища.

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонообразные виды рельефа.

Недостатки ГЭС:

затопление пахотных земель;

строительство ведется там, где есть большие запасы энергии воды;

на горных реках опасны из-за высокой сейсмичности районов;

сокращенные и нерегулируемые попуски воды из водохранилищ по 1015 дней (вплоть до их отсутствия), приводят к перестройке уникальных пойменных экосистем по всему руслу рек, как следствие, загрязнение рек, сокращение трофических цепей, снижение численности рыб, элиминация беспозвоночных водных животных, повышение агрессивности компонентов гнуса (мошки) из-за недоедания на личиночных стадиях, исчезновение мест гнездования многих видов перелетных птиц, недостаточное увлажнение пойменной почвы, негативные растительные сукцессии (обеднение фитомассы), сокращение потока биогенных веществ в океаны.

ПРИНЦИП РАБОТЫ ГЭС

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию (рисунок 1).

Рисунок 1 Схема платины ГЭС

Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию. Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию потока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое.

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

мощные вырабатывают от 25 МВт и выше;

средние до 25 МВт;

малые гидроэлектростанции до 5 МВт.

Мощность ГЭС зависит от напора и расхода воды, а также от КПД используемых турбин и генераторов. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также еще по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

Гидроэлектростанции также делятся в зависимости от максимального использования напора воды:

высоконапорные более 60 м;

средненапорные от 25 м;

низконапорные от 3 до 25 м.

В зависимости от напора воды, в гидроэлектростанциях применяются различные виды турбин. Для высоконапорных турбин ковшовые и радиально-осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаются поворотно-лопастные и радиально-осевые турбины, на низконапорных поворотно-лопастные турбины в железобетонных камерах. Принцип работы всех видов турбин схож вода, находящаяся под давлением (напор воды) поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передается на гидрогенератор, который и вырабатывает электроэнергию. Турбины отличаются некоторыми техническими характеристиками, а также камерами стальными или железобетонными, и рассчитаны на различный напор воды.

Гидроэлектрические станции также разделяются в зависимости от принципа использования природных ресурсов, и, соответственно, образующейся концентрации воды. Здесь можно выделить следующие ГЭС:

русловые и плотинные ГЭС;

приплотинные ГЭС;

деривационные гидроэлектростанции;

Гидроаккумулирующие электростанции.

Русловые и плотинные ГЭС наиболее распространенные виды гидроэлектрических станций. Напор воды в них создается посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. Такие гидроэлектростанции строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое

Приплотинные ГЭС строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.

Деривационные гидроэлектростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида безнапорные или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище. Такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.

ГАЭС (гидроаккумулирующие электростанции) способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные периоды (не пиковой нагрузки), агрегаты ГАЭС работают как насосы от внешних источников энергии и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и приводит в действие турбины.

В состав гидроэлектрических станций, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъемники, способствующие навигации по водоему, рыбопропускные, водозаборные сооружения, используемые для ирригации и многое другое.

Ценность гидроэлектрической станции состоит в том, что для производства электрической энергии, они используют возобновляемые природные ресурсы. Ввиду того, что потребности в дополнительном топливе для ГЭС нет, конечная стоимость получаемой электроэнергии значительно ниже, чем при использовании других видов электростанций.

гидроэлектростанция энергия плотина русловый

Гидроэлектростанция (ГЭС) представляет собой сложную технологическую систему, конечной целью которой является получение электроэнергии из речного водотока.


Гидроэнергия – альтернативный путь получения дешевой энергии:

На всех этапах своего развития человеческая цивилизация остро нуждалась в источниках дешевой энергии , чтобы обогреть жилища и поддерживать простейшие производственные операции ремесленного люда. К основным источникам энергии относилась тепловая энергия, получаемая от сгорания древесины, торфа, каменного угля и производных углеводородного сырья без переработки.

Однако, для получения тепловой энергии необходимо было иметь соответствующие запасы сырья. Иными словами, чтобы в домашнем очаге крестьянина, жившего в средневековье, горел огонь, а в печи ремесленника присутствовал жар, нужно было заготавливать дрова или иметь нужный запас угля. Потребность в топливе постоянно росла, что обусловило необходимость возведения угольных шахт, привело к вырубке лесов и совершенствованию добычи углеводородного сырья.

Несмотря на традиционные представления, сформированные в научной среде на протяжении столетий, всегда имелась реальная альтернатива общепринятым источникам энергии . Речь идет о гидроэнергии, которая скрыта внутри движущихся водных потоках. В действительности, объемы энергии, сосредоточенной в русловых водотоках и приливных движениях природных вод безмерны. Наиболее перспективным вариантом получения дешевой энергии является преобразование внутреннего потенциала течения в электрический ресурс за счет разности уровней потока. До середины XIX века большое распространение получили водяные колёса, преобразующие силу падающей воды в механическую энергию вращающегося вала. Принцип работы водяного колеса широко применялся в водяных мельницах, в работе кузнечного молота и мехов. В последующем, на смену водяным колёсам пришли более производительные гидротурбины с высоким КПД.

В первой половине прошлого века во многих развитых странах мира начинают возводить уникальные гидротехнические сооружения – гидроэлектростанции (ГЭС). Считается, что в России первая гидроэлектростанция была построена на реке Берёзовка в Рудном Алтае в 1892 году. Берёзовская ГЭС, мощностью 200 КВт обеспечивала электричеством систему шахтного водоотлива из Зыряновского рудника.


Гидроэлектростанция (ГЭС) как гидротехническое сооружение:

На сегодняшний день существует несколько определений гидроэлектростанции (ГЭС ). К наиболее распространенному варианту формулировки данного определения следует отнести следующее:

Гидроэлектростанция (ГЭС) представляет собой сложную технологическую систему, конечной целью которой является получение электроэнергии из речного водотока.

Или, например, такое:

Гидроэлектростанция (ГЭС) - электростанция, в качестве источника энергии использующая энергию водного потока.

Очевидно, что главным условием работы гидроэлектростанции является соблюдение нескольких факторов:

а) поступление больших объемов воды круглый год,

б) максимальный уклон речного рельефа, что позволит водной массе низвергаться вниз.

При принятии решения по строительству ГЭС принимают во внимание потенциальные возможности естественного речного водотока в плане поставки достаточного водного ресурса. Кроме того, на данном этапе следует досконально изучить особенности местного рельефа, который может существенно влиять на мощность станции.

Принцип работы гидроэлектростанции:

В упрощенном понимании принцип работы ГЭС можно представить следующим образом. Необходимый для работы гидроэлектростанции поток воды подается от нескольких гидротехнических сооружений. Напор водной массы давит на лопасти гидротурбины, которые приводятся во вращательное движение. С момента начала вращения лопастей механическая энергия передается на гидрогенераторы, которые в свою очередь начинают вырабатывать электроэнергию .

Конструкция и составляющие гидроэлектростанции. Машинный зал. Гидротурбины. Генераторы тока. Гидрогенераторы. Плотина (дамба). Уравнительный резервуар:

Одним из центральных помещений гидроэлектростанции является машинный зал , в котором размещается базовое энергетическое оборудование . Под машинный зал выделяется большое помещение, расположенное в нижней части объекта. В зале на специальной бетонной основе размещается целая система гидроагрегатов, которые в свою очередь состоят из гидротурбин и генераторов тока . Поток воды, подводимый к турбинам, заставляет лопасти крутиться, в результате чего гидрогенераторы начинают вырабатывать ток.

Длина машинного зала зависит от количества расположенных здесь гидротурбин. Зал оснащается мостовым краном, благодаря которому происходит периодическая замена изношенного оборудования, т.е. гидротурбин и генераторов тока. Турбины, выпускаемые отечественной промышленностью, рассчитаны на разный напор воды, поэтому подбираются для конкретной ГЭС с учетом рассчитанной мощности. Работой гидротурбин и электрогенераторов управляет дежурная смена операторов из другого помещения, расположенного в здании ГЭС.

Анализируя многие неоднозначные моменты работы гидроэлектростанции, нельзя упустить назначение отдельных гидротехнических сооружений, без которых процесс преобразования механической энергии в принципе невозможен. К таким важным гидротехническим сооружениям следует отнести плотину (дамбу) .

Главное предназначение плотины – целенаправленное перекрытие речного русла с перенаправлением водотока по закрытому каналу или искусственному руслу в направлении гидроэлектростанции. Плотина, совместно с электростанцией образуют комплексное гидротехническое сооружение – гидроузел. В результате перекрытия водотока реки образуется достаточно объемное водохранилище, уровень которого может регулироваться посредством увеличения или снижения напора выпуска. В гористых районах возводятся глухие плотины, полностью перекрывающие речное русло. Для получения большого напора низвергающейся водной повышаются требования к массе плотины, повышающей ее прочность. Вот почему во время строительства горных плотин используется бетонная (железобетонная) основа. Достаточной надежностью отличаются каменные плотины, возведенные из плотных скальных пород или высокопрочного полнотелого кирпича.

Очевидно, что для обеспечения бесперебойной работы ГЭС необходимо поддерживать напор в заданных пределах. Поэтому, вода, поступающая к гидротурбинам, предварительно сосредотачивается в уравнительном резервуаре . Данный подход актуален для электростанций, возведенных на реках с естественным течением водных масс, не меняющимся на протяжении года. Для речных водоемов с нестабильной скоростью потока требуется возведение плотины с формированием четких границ водохранилища, что сопровождается подъемом уровня воды.

Безаварийную круглосуточную работу ГЭС обеспечивает устройство управления и контроля станции .

Немаловажное значение имеет дополнительное оборудование – трансформаторная подстанция и распределительные устройства .

От слаженной работы всех систем и устройств зависит безопасность эксплуатации электростанции. В силу сложности инициируемых рабочих операций и технологических регламентов возрастает ответственность руководящего аппарата и обслуживающего персонала за безаварийную эксплуатацию всего объекта.

быстрый набор мощности после запуска станции;

– возрастают возможности промышленного разведения рыбы .

К недостаткам ГЭС относится:

– риски аварий гидротехнических сооружений, возведенных в горных районах с высокими показателями сейсмичности;

– экологические проблемы, характерные для больших водохранилищ, связанные с периодической убылью воды (уменьшение трофических цепей, загрязнение водоема, обеднение фитомассы, исчезновение мест гнездования перелетных птиц , элиминация беспозвоночных);

– затопление плодородных участков низин с потерей возможностей получения пользы от их эксплуатации.

Перспективы использования гидроэлектростанций:

На сегодняшний день гидроэнергетика является весьма перспективным направлением развития энергетического сектора государств. В отличие от атомной энергетики, гидроэнергетика более предпочтительна, поскольку несет меньше рисков аварийности и нанесения вреда всему живому. Многие страны Запада закрывают атомные проекты, отдавая предпочтение более безопасным и экологически чистым технологиям получения дешевой энергии.

Однако развитию гидроэнергетики мешает ряд факторов:

а) необходимость расширения производства гидротурбин;

б) недостаток финансирования проектов гидроэнергетики;

в) удаленность гидроэлектростанций от мегаполисов и густонаселенных территорий, что влияет на эффективность передачи энергетического ресурса.

Толчком к развитию гидроэнергетики может стать совершенствование технологий аккумулирования и передачи электроэнергии на большие расстояния .

Крупнейшие (большие) гидроэлектростанции в мире:

Наименование Страна Река Год пуска/достройки (модернизации) Мощность (МВт) Выработка в год, млрд кВт⋅ч Площадь вдхр. (км²)
1 Три ущелья Китай Янцзы 2003/2007/2012 22 500 98,1 632
2 Байхэтань (строящаяся) Китай Янцзы 2021(?) 16 000* 60,24 ?
3 Итайпý Бразилия

/ Парагвай

Парана 1984/1991/2003 14 000 98,6 ] 1 350
4 Силоду Китай Янцзы 2014 13 860 55,2 108
5 Белу Монти

(строящаяся)

Бразилия Шингу 2016/2019(?) 11 233* 39,5 448
6 Гýри Венесуэла Карони 1978/1986 10 235 53,41 4 250
7 Удундэ

(строящаяся)

Китай Янцзы 2018/2020(?) 10 200* ? ?
8 Тукуруи Бразилия Токантинс 1984/2007 8 370 41,43 3 014
9 Тасанг

(строительство остановлено)

Мьянма Салуин ??? 7 110* 35,45 870
10 Гранд-Кули США Колумбия 1942/1980/1985 6 809 20 324
11 Хидасэ

(строящаяся)

Эфиопия Голубой Нил 2018/2022(?) 6 450* 16,15 1 562
12 Сянцзяба Китай Янцзы 2012/2014 6 448 30,8 95,6
13 Лунтань Китай Хуншуйхэ 2007/2009 6 426 18,7 ?
14 Саяно-Шушенская Россия Енисей 1985/1989 6 400 24 621
15 Тарбела (строятся 4-я и 5-я очереди) Пакистан Инд 1976/2018/2023 4 888

/ 6 298**

13 250
16 Красноярская Россия Енисей 1967/1971 6 000 20,4 2 000
17 Ночжаду Китай Меконг 2012/2014 5 850 23,9 320
18 Робер-Бурасса Канада

(Квебек)

Ла-Гранд 1979/1981 5 616 26,5 2 835
19 Водопад Черчилля Канада

(Ньюфаундленд

и Лабрадор)

Черчилль 1971/1974 5 428 35 6 988
20 Цзиньпин-II Китай Ялунцзян 2012/2014 4 800 ? ?
21 Братская Россия Ангара 1961/1966 4 530 22,6 5 426
22 Диамер-Бхаса

(строящаяся)

Пакистан Инд 2023(?) 4 500* 19,03 112
23 Дасу

(строящаяся)

Пакистан Инд 2023(?) 4 320* ? ?
24 Ласива Китай Хуанхэ 2010 4 200 10,23 ?
25 Сяовань Китай Меконг 2010 4 200 19 190
26 Ясирета́ Аргентина

/ Парагвай

Парана 1998/2011 3 850 20,09 1 695
27 Усть-Илимская Россия Ангара 1980 3 840 21,7 1 833
28 Жирау Бразилия Мадейра 2013/2016 3 750 19,2 258
29 Цзиньпин-I Китай Ялунцзян 2014 3 600 16-18 ?
30 Рогунская

(строящаяся)

Таджикистан Вахш 2018/2024(?) 3 600* 13,8 ?
31 Myitsone

(строительство остановлено)

Мьянма Иравади ??? 3 600* 16,63 766
32 Санту Антониу Бразилия Мадейра 2012/2016 3 568,3 21,3 421
33 Илья-Солтейра Бразилия Парана 1974 3 444 17,9 1 195
34 Эртань Китай Ялунцзян 1999 3 300 17 101
35 Pubugou Китай Дадухэ 2009/2010 3 300 14,6 ?
36 Макагуа Венесуэла Карони 1961/1996/2015 3 245 15,2 47,4
37 Шингó Бразилия Сан-Франсиску 1994/1997 3 162 18,7 60
38 Нурекская Таджикистан Вахш 1979/1988 3 015 13,2 98
39 Гоупитань Китай Ву 2009/2011 3 000 9,67 94,3
40 Guanyinyan Китай Янцзы 2014/2016 3 000 ? ?
41 Лянхэкоу

(строящаяся)

Китай Ялунцзян 2021/2023(?) 3 000* ? ?
42 Богучанская Россия Ангара 2012/2014 2 997 17,6 2 326
43 Плотина Беннетта Канада

(Британская Колумбия)

Пис 1968/2012 2 917 13,1 1 761
44 Мика Канада

(Британская Колумбия)

Колумбия 1973/2015 2 805 7,2 430
45 Ля-Гранд-4 Канада

(Квебек)

Ла-Гранд 1986 2 779 ? 765
46 Волжская Россия Волга 1961/2025 2 744,5 10,43 3 117
47 Гэчжоуба Китай Янцзы 1988 2 715 17,01 ?
48 Плотина вождя Джозефа США Колумбия 1958/1973/1979 2 620 12,5 34
49 Даганшань Китай Дадухэ 2015/2016 2 600 11,43 ?
50 Чанхэба Китай Дадухэ 2016/2017 2 600 8,34 ?
51 Даниел-Джонсон Канада

(Квебек)

Маникуаган 1970/1989 2 592 ? 1 942
52 им. Роберта Мозеса США Ниагара 1961 2 525 ?
53 Жигулевская Россия Волга 1957/2018 2 488 11,7 6 450
54 Ревелсток Канада

(Британская Колумбия)

Колумбия 1984/2011 2 480 ? 115
55 Паулу-Афонсу IV Бразилия Сан-Франсиску 1979/1983 2 462 ?
56 Итуанго

(строящаяся)

Колумбия Каука 2018(?) 2 456* 9,2 38
57 им. Мануэля Торреса

/ Чикоасен

Мексика Грихальва

(каньон Сумидеро)

1980/2005 2 430 ? ?
58 Ля-Гранд-3 Канада

(Квебек)

Ла-Гранд 1984 2 418 ? 2 420
59 Плотина Ататюрка Турция Евфрат 1993 2 400 8,9 817
60 Тери

(строящаяся)

Индия Бхагиратхи 2006/2018 2 400 6,53 52
61 Jinanqiao Китай Янцзы 2010 2 400 ? ?
62 Шонла Вьетнам Да 2010/2012 2 400 10,25 440
63 Бакун Малайзия Балуи 2011 2 400 ? 695
64 Liyuan Китай Янцзы 2014/2015 2 400 ? 14,7
65 Гуанди Китай Ялунцзян 2012/2013 2 400 ? ?
66 Токома

(строящаяся)

Венесуэла Карони 2016/2018(?) 2 320* 12,1 87
67 Карун-3 Иран Карун 2005 2 280 4,17 48
68 Железные Ворота-I Румыния

/ Сербия

Дунай 1970/2013 2 254,8 11,3 104
69 Maerdang

(строящаяся)

Китай Хуанхэ 2016/2018(?) 2 200* ? ?
70 Плотина Джона Дея США Колумбия 1971 2 160 8,41 ?
71 Каруачи Венесуэла Карони 2006 2 160 12,95 238
72 Лудила Китай Янцзы 2014 2 160 ? ?
73 Ля-Гранд-2-А Канада

(Квебек)

Ла-Гранд 1992 2 106 ? 2 835
74 Асуанская Египет Нил 1970 2 100 11 5 250
75 Итумбиара Бразилия Паранаиба 1980 2 082 ? 778
76 Плотина Гувера США Колорадо 1939/1961 2 080 4 639
77 Кахóра-Бáсса Мозамбик Замбези 1975/1977 2 075 ? 2 039
78 Лаука

(строящаяся)

Ангола Кванза 2018(?) 2 069,5* 8,64 188
79 Бурейская Россия Бурея 2003/2009 2 010 5,07 740
80 Лицзяся Китай Хуанхэ 1997/2000 2 000 ? 383
81 Карун-1 Иран Карун 1976/1995/2006 2 000 ? 54,8
82 Карун-2 Иран Карун 2002/2007 2 000 3,7 7,49
83 Ахаи Китай Янцзы 2012/2014 2 000 8,89 23,4
84 Готванд

(строящаяся)

Иран Карун 2012/2018(?) 2 000* 4,5 96,5
85 Субансири

(строящаяся)

Индия Субансири 2016/2018(?) 2 000* 7,42 33,5
86 Shuangjiangkou

(строящаяся)

Китай Дадухэ 2018(?) 2 000* 8,34 ?

Примечание:

* – указана проектная мощность,

** – указана мощность после достройки.

Крупнейшие гидроэлектростанции в России:

По состоянию на 2017 год в России имеется 15 действующих гидроэлектростанций свыше 1000 МВт, и более сотни гидроэлектростанций меньшей мощности.

Наименование Мощность,
ГВт
Среднегодовая
выработка, млрд кВт·ч
Река
Саяно-Шушенская ГЭС 6,40 23,50 р. Енисей, г. Саяногорск
Красноярская ГЭС 6,00 20,40 р. Енисей, г. Дивногорск
Братская ГЭС 4,52 22,60 р. Ангара, г. Братск
Усть-Илимская ГЭС 3,84 21,70 р. Ангара, г. Усть-Илимск
Богучанская ГЭС 3,00 17,60 р. Ангара, г. Кодинск
Волжская ГЭС 2,66 11,63 р. Волга, г. Волгоград и г. Волжский (плотина ГЭС находится между городами)
Жигулёвская ГЭС 2,46 10,34 р. Волга, г. Жигулёвск
Бурейская ГЭС 2,01 7,10 р. Бурея, пос. Талакан
Чебоксарская ГЭС 1,40 (0,8)* 3,50 (2,2)* р. Волга, г. Новочебоксарск
Саратовская ГЭС 1,40 5,7 р. Волга, г. Балаково
Зейская ГЭС 1,33 4,91 р. Зея, г. Зея
Нижнекамская ГЭС 1,25 (0,45)* 2,67 (1,8)* р. Кама, г. Набережные Челны
Загорская ГАЭС 1,20 1,95 р. Кунья, пос. Богородское
Воткинская ГЭС 1,04 2,28 р. Кама, г. Чайковский
Чиркейская ГЭС 1,00 1,74 р. Сулак, п. Дубки

Примечание:

* – указана проектная (фактическая) мощность / среднегодовая выработка.

Примечание: © Фото //www.pexels.com, //pixabay.com

Саяно-Шушенская гидроэлектростанция (СШГЭС) - крупнейшая в России, расположена на реке Енисей, между Красноярским краем и Хакасией. Строительство станции началось в 1963 году. Первый гидроагрегат был запущен в декабре 1978 года. Возведение ГЭС полностью завершилось лишь в 2000-м. Через девять лет на станции произошла авария: тогда вышел из строя гидроагрегат № 2, его выбросило напором воды со своего места. Машинный зал и технические помещения под ним затопило, погибли 75 человек. Как позже установила комиссия, причиной аварии стал износ шпилек крепления крышки турбины. На восстановление и комплексную модернизацию станции компания «Русгидро» потратила 41 миллиард рублей. Сейчас работы практически завершены. The Village выяснил, как работает станция.

Саяно-Шушенская ГЭС

Крупнейшая гидроэлектростанция
в России

год основания : 1963

местоположение : посёлок Черёмушки, Хакасия

число сотрудников : 580 человек






Саяно-Шушенское водохранилище образовано плотиной ГЭС. Его объём составляет 31 кубический километр. Эта плотина является самой высокой в мире арочно-гравитационной плотиной, её высота 245 метров. Длина гребня составляет 1 074 метра, ширина основания - 105 метров.




Из водохранилища вода попадает в водоводы. Каждый водовод имеет диаметр 7,5 метра. В теле плотины установлено около одиннадцати тысяч различных датчиков, контролирующих состояние сооружения.





Из водоводов вода попадает на турбины. Благодаря их вращению, приходят в движение генераторы, которые вырабатывают электроэнергию.



Центральный пульт управления. Мозг станции, откуда всего два человека управляют её работой.





В здании СШГЭС установлены десять гидроагрегатов, мощность каждого - 640 мегаватт. Таким образом, общая мощность станции - 6 400 мегаватт, это самая большая электростанция России. Каждый из десяти гидроагрегатов СШГЭС может пропускать по 350 кубических метров воды в секунду.





Восстановительные работы в машинном зале Саяно-Шушенской ГЭС сейчас завершаются, восстанавливается последний гидроагрегат, ведутся отделочные работы.










Оборудование на нижних отметках машинного зала тоже полностью обновили.


Выходя из турбин, вода ниже по течению бурлит и образует водовороты.




Эксплуатационный водосброс используется во время сильных паводков и может пропускать до 13 тысяч кубометров воды в секунду.



Раньше ток со станции подавался в открытое распределительное устройство, которое сейчас демонтируется.




Теперь его функции выполняет комплектное элегазовое распределительное устройство, расположенное в небольшом закрытом помещении. Оно гораздо более надёжное и безопасное, требует намного меньших затрат на обслуживание. В нём - 19 ячеек, в каждой из которых расположены выключатели, разъединители, заземлители, измерительные трансформаторы тока и напряжения, а также шкаф управления. В узлах ячейки находится элегаз (SF6). Это тяжёлый газ, очень хороший изолятор.



Станция вырабатывает в среднем 23,5 миллиарда киловатт-часов электроэнергии в год. Проектная мощность - 6 400 мегаватт. Основные потребители - Саянский и Хакасский алюминиевый заводы, предприятия Красноярского края и Кемеровской области. Кроме того, станция является регулирующей для всей энергосистемы Сибири.

Фотографии: Иван Гущин

Гидроэлектростанция

Гидроэлектроста́нция (ГЭС) - электростанция , в качестве источника энергии использующая энергию водного потока . Гидроэлектростанции обычно строят на реках , сооружая плотины и водохранилища .

Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонобразные виды рельефа.

Особенности

Принцип работы

Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию.

Крупнейшие ГЭС в мире

Наименование Мощность,
ГВт
Среднегодовая
выработка, млрд кВт·ч
Собственник География
Три ущелья 22,40 100,00 р. Янцзы , г. Сандоупин, Китай
Итайпу 14,00 100,00 Итайпу-Бинасионал р. Парана , г. Фос-ду-Игуасу , Бразилия /Парагвай
Гури 10,30 40,00 р. Карони , Венесуэла
Черчилл-Фолс 5,43 35,00 Newfoundland and Labrador Hydro р. Черчилл, Канада
Тукуруи 8,30 21,00 Eletrobrás р. Токантинс , Бразилия

Гидроэлектростанции России

По состоянию на 2009 год в России имеется 15 гидроэлектростанций свыше 1000 МВт (действующих, достраиваемых или находящихся в замороженном строительстве), и более сотни гидроэлектростанций меньшей мощности.

Крупнейшие гидроэлектростанции России

Наименование Мощность,
ГВт
Среднегодовая
выработка, млрд кВт·ч
Собственник География
Саяно-Шушенская ГЭС 2,56 (6,40) 23,50 ОАО РусГидро р. Енисей , г. Саяногорск
Красноярская ГЭС 6,00 20,40 ОАО «Красноярская ГЭС» р. Енисей , г. Дивногорск
Братская ГЭС 4,52 22,60 ОАО Иркутскэнерго , РФФИ р. Ангара , г. Братск
Усть-Илимская ГЭС 3,84 21,70 ОАО Иркутскэнерго , РФФИ р. Ангара , г. Усть-Илимск
Богучанская ГЭС 3,00 17,60 ОАО «Богучанская ГЭС», ОАО РусГидро р. Ангара , г. Кодинск
Волжская ГЭС 2,58 12,30 ОАО РусГидро р. Волга , г. Волжский
Жигулёвская ГЭС 2,32 10,50 ОАО РусГидро р. Волга , г. Жигулевск
Бурейская ГЭС 2,01 7,10 ОАО РусГидро р. Бурея , пос. Талакан
Чебоксарская ГЭС 1,40 (0,8) 3,31 (2,2) ОАО РусГидро р. Волга , г. Новочебоксарск
Саратовская ГЭС 1,36 5,7 ОАО РусГидро р. Волга , г. Балаково
Зейская ГЭС 1,33 4,91 ОАО РусГидро р. Зея , г. Зея
Нижнекамская ГЭС 1,25 (0,45) 2,67 (1,8) ОАО «Генерирующая компания», ОАО «Татэнерго » р. Кама , г. Набережные Челны
Загорская ГАЭС 1,20 1,95 ОАО РусГидро р. Кунья , пос. Богородское
Воткинская ГЭС 1,02 2,60 ОАО РусГидро р. Кама , г. Чайковский
Чиркейская ГЭС 1,00 2,47 ОАО РусГидро р. Сулак , п. Дубки

Примечания:

Другие гидроэлектростанции России

Предыстория развития гидростроения в России

В Советский период развития энергетики упор делался на особую роль единого народнохозяйственного плана электрификации страны - ГОЭЛРО , который был утвержден 22 декабря 1920 года. Этот день был объявлен в СССР профессиональным праздником - Днём энергетика . Глава плана, посвященная гидроэнергетике - называлась «Электрификация и водная энергия». В ней указывалось, что гидроэлектростанции могут быть экономически выгодными, главным образом, в случае комплексного использования: для выработки электроэнергии, улучшения условий судоходства или мелиорации . Предполагалось, что в течение 10-15 лет в стране можно соорудить ГЭС общей мощностью 21 254 тыс. лошадиных сил (около 15 млн кВт), в том числе в европейской части России - мощностью 7394, в Туркестане - 3020, в Сибири - 10 840 тыс. л.с. На ближайшие 10 лет намечалось сооружение ГЭС мощностью 950 тыс. кВт, однако в последующем было запланировано сооружение десяти ГЭС общей рабочей мощностью первых очередей 535 тыс. кВт.

Хотя уже за год до этого в 1919 году Совет труда и обороны признал строительства Волховской и Свирской гидростанций объектами, имеющими оборонное значение. В том же году началась подготовка к возведению Волховской ГЭС, первой из гидроэлектростанций возведенных по плану ГОЭЛРО.

Однако и до начала строительства Волховской ГЭС Россия имела достаточно богатый опыт промышленного гидростроительства, в основном, частными компаниями и концессиями . Информация об этих ГЭС, построенных в России за последнее десятилетие 19-го века и первые 20 лет двадцатого столетия достаточно разрознена, противоречива и требует специальных исторических исследований.

Наиболее достоверным считается, что первой гидроэлектростанцией в России была Березовская (Зыряновская) ГЭС, построенная в Рудном Алтае на реке Березовка (приток р. Бухтармы) в 1892 году. Она была четырехтурбинная общей мощностью 200 кВт и предназначалась для обеспечения электричеством шахтного водоотлива из Зыряновского рудника.

На роль первой также претендует Ныгринская ГЭС, которая появилась в Иркутской губернии на реке Ныгри (приток р. Вачи) в 1896 году. Энергетическое оборудование станции состояло из двух турбин с общим горизонтальным валом, вращавшим три динамо-машины мощностью по 100 кВт. Первичное напряжение преобразовывалось четырьмя трансформаторами трехфазного тока до 10 кВ и передавалось по двум высоковольтным линиям на соседние прииски. Это были первые в России высоковольтные ЛЭП. Одну линию (длиной 9 км) проложили через гольцы к прииску Негаданному, другую (14 км) - вверх по долине Ныгри до устья ключа Сухой Лог, где в те годы действовал прииск Ивановский. На приисках напряжение трансформировалось до 220 В. Благодаря электроэнергии Ныгринской ГЭС в шахтах установили электрические подъемники. Кроме того, электрифицировали приисковую железную дорогу, служившую для вывоза отработанной породы, которая стала первой в России электрифицированной железной дорогой.

Преимущества

  • использование возобновляемой энергии.
  • очень дешевая электроэнергия.
  • работа не сопровождается вредными выбросами в атмосферу.
  • быстрый (относительно ТЭЦ/ТЭС) выход на режим выдачи рабочей мощности после включения станции.

Недостатки

  • затопление пахотных земель
  • строительство ведется только там, где есть большие запасы энергии воды
  • на горных реках опасны из-за высокой сейсмичности районов
  • сокращенные и нерегулируемые попуски воды из водохранилищ по 10-15 дней (вплоть до их отсутствия), приводят к перестройке уникальных пойменных экосистем по всему руслу рек, как следствие, загрязнение рек, сокращение трофических цепей, снижение численности рыб, элиминация беспозвоночных водных животных, повышение агрессивности компонентов гнуса (мошки) из-за недоедания на личиночных стадиях, исчезновение мест гнездования многих видов перелетных птиц, недостаточное увлажнение пойменной почвы, негативные растительные сукцессии (обеднение фитомассы), сокращение потока биогенных веществ в океаны.

Крупнейшие аварии и происшествия

Примечания

См. также

Ссылки

  • Карта крупнейших ГЭС России (GIF, данные 2003 года)

Гидроэлектростанции входят в состав гидроузлов. Гидроузел – комплекс гидротехнических сооружений, обеспечивающих использование водных ресурсов для получения электрической энергии, водоснабжения, орошения, а также защиту от наводнений, улучшение условий судоходства, рыбоводства, рекреации и др.

Состав и назначение сооружений ГЭС. Если основной задачей создания гидроузла является получение электроэнергии, то его обычно называют ГЭС или гидроэнергетическим объектом. В комплексе сооружений гидроузла выделяют основные и вспомогательные сооружения. Для обеспечения производства строительно-монтажных работ в период строительства возводят временные сооружения.

Основные сооружения в зависимости от выполняемых функций подразделяют на:

Водоподпорные и водосбросные сооружения, предназначенные в зависимости от схемы ГЭС для создания водохранилища, всего или части напора ГЭС, пропуска в нижний бьеф эксплуатационных расходов, в том числе паводковых (включающие плотины и водосбросы разных типов), а также для сброса льда, шуги, промыва наносов (включающие для этих целей в ряде случаев специальные устройства). На многоводных реках максимальные паводковые расходы могут достигать 100 тыс.м3 /с и более. Так, на самой крупной в мире ГЭС «Три ущелья» на р. Янцзы (Китай) сооружения гидроузла рассчитаны на пропуск при ФПУ максимального расчетного паводка 102,5 тыс.м3 /с, на Чебоксарской ГЭС на Волге максимальный расчетный расход обеспеченностью 0,01% составляет 48 тыс.м3 /с, на Днепрогэсе – 25,9 тыс.м3 /с.

Энергетические сооружения, предназначенные для выработки электроэнергии и выдачи ее в энергосистему и включающие водоприемники; водоводы, подводящие воду из верхнего бьефа к гидротурбинам в здании ГЭС и отводящие воду от здания ГЭС в нижний бьеф; здания ГЭС с энергетическим оборудованием (гидротурбины, гидрогенераторы, трансформаторы и др.), механическим, подъемно-транспортным, вспомогательным оборудованием, системой управления; открытые (ОРУ) или закрытые (ЗРУ) распределительные устройства для приема и выдачи электроэнергии в энергосистему, а также аварийного отключения ЛЭП.

Судоходные и лесосплавные сооружения, предназначенные для пропуска судов, плотов через гидроузел и включающие шлюзы, судоподъемники с подходными и отводящими каналами, плотоходы и др.

Водозаборы для орошения, водоснабжения, обеспечивающие необходимую подачу воды и включающие водоприемники, насосные станции и др.

Рыбопропускные и рыбозащитные сооружения, предназначенные для пропуска проходных пород рыбы к нерестилищам в верхнем бьефе и в обратном направлении и включающие рыбоходы и рыбоподъемники.

Транспортные сооружения, предназначенные для связи сооружений гидроузла между собой, а также для пропуска через них автомобильных и железных дорог и включающие мосты, шоссейные и железные дороги и др.

В зависимости от природных условий участка размещения гидроузла (гидрологических, топографических, геологических, климатических), схемы создания напора, типа ГЭС часть основных сооружений гидроузла может быть совмещена друг с другом (например, водосливные здания ГЭС, где здание ГЭС совмещено с водосбросом).

Вспомогательные сооружения предназначены для обеспечения необходимых условий нормальной эксплуатации гидроузла и работы обслуживающего персонала и включают административно-бытовые здания, системы водоснабжения, канализации и др.

Временные сооружения, необходимые для производства строительно-монтажных работ, можно разбить на две группы.

К первой группе относятся сооружения, обеспечивающие пропуск расходов реки во время строительства в обход котлованов и строящихся сооружений и защиту их от затопления и включающие строительные каналы, водоводы, туннели, перемычки, системы водопонижения и др.

Ко второй группе относятся подсобные производственные предприятия, включающие бетонные заводы со складами цемента, заполнителей для бетона, арматурные, деревообрабатывающие и механические цеха, базы механизации и автотранспорта, склады, временные дороги, системы временного электроснабжения, связи, водоснабжения и др.

Во многих случаях часть временных сооружений после завершения строительства используют в период эксплуатации ГЭС. Так, из сооружений первой группы строительные каналы и туннели могут входить полностью или частично в состав водосбросов или водоводов ГЭС, а перемычки в состав плотин.

Сооружения второй группы полностью или частично могут использоваться как начальная инфраструктура территориальнопроизводственных комплексов, базирующихся на ГЭС.

Для обеспечения надежной и долговечной работы ГЭС в эксплуатационных условиях с учетом комплексного использования, достижения максимального экономического эффекта за счет снижения стоимости, сокращения сроков строительства и ускорения ввода в действие гидроагрегатов важное значение имеет выбор рациональной компоновки и типов сооружений, исходя из природных условий, параметров водохранилища и ГЭС, режимов эксплуатации.

Учитывая длительные сроки строительства крупных ГЭС, достигающие 5–10 лет, обычно предусматривается возведение сооружений и ввод гидроагрегатов в эксплуатацию очередями при недостроенных сооружениях, пониженных напорах, благодаря чему повышается экономическая эффективность.

ГЭС и ГАЭС подразделяют:

По способу создания напора, исходя из принципиальных схем использования гидравлической энергии на ГЭС, размещения здания ГЭС в составе сооружений: ГЭС с русловыми зданиями; ГЭС с приплотинными зданиями; деривационные ГЭС.

По установленной мощности (для ГАЭС по мощности в генераторном режиме) на: мощные – более 1000 МВт, средней мощности от 30 до 1000 МВт, малой мощности – менее 30 МВт.

По напору (максимальному): высоконапорные – более 300 м, средненапорные – от 30–50 до 300 м, низконапорные – менее 30–50 м.

ГЭС с русловыми зданиями обычно применяются на равнинных реках на мягких и скальных основаниях при напорах до 50 м и характеризуются тем, что здания ГЭС входят в состав напорного фронта и воспринимают давление воды со стороны верхнего бьефа. В комплекс сооружений ГЭС обычно входят бетонные сооружения, включающие здание ГЭС, водосливную плотину и судоходный шлюз, и земляные плотины, образующие большую часть напорного фронта. Во многих случаях русловые здания ГЭС выполняются совмещенными с водосбросами. Применение совмещенных русловых зданий на Киевской, Каневской, Днестровской (Украина), Плявинской (Латвия), Саратовской (Россия) ГЭС и ряде других позволило отказаться от водосливных бетонных плотин, сократить фронт бетонных сооружений и получить значительную экономию. На выбор общей компоновки сооружений ГЭС с русловыми зданиями, применяемых на многоводных реках, где расчетные паводковые расходы в период строительства могут достигать 10–20 тыс.м3 /с, существенно влияет схема пропуска расходов реки в период строительства.

В зависимости от расположения бетонных сооружений ГЭС различают следующие компоновки (рис. 4.1):

Береговая и пойменная компоновка.

Такие компоновки отличаются тем, что основные бетонные сооружения (здание ГЭС, водосливная плотина и др.) размещаются вне русла реки, их котлован ограждается перемычками, и в период их строительства пропуск строительных расходов, включая паводки, осуществляется по руслу реки. Когда бетонные сооружения возведены, русло перекрывается глухой плотиной, чаще всего земляной, и расходы реки пропускаются через бетонные сооружения. При береговой компоновке высота перемычек меньше, а при расположении котлована в пределах участка берега, не затапливаемого паводками строительного периода, вообще отпадает необходимость в устройстве перемычек. Существенным недостатком береговой компоновки является необходимость выполнения больших объемов земляных работ по выемке грунта в котловане, подводящем и отводящем каналах. При пойменной компоновке котлован бетонных сооружений размещается в пойме ближе к руслу, что приводит, с одной стороны, к увеличению высоты перемычек, ограждающих котлован, а, с другой, – к уменьшению объемов работ по выемке грунта.

Русловая компоновка. При такой компоновке бетонные сооружения размещаются в русле реки. При этом применяются следующие схемы их возведения:

В одном котловане, огражденном перемычками, с пропуском строительных расходов через выполненный в береге канал.

В две (редко в три) очереди, когда часть русла отгораживается перемычками и в ней возводят бетонные сооружения 1-й очереди, а через другую часть русла пропускают строительные расходы. Когда сооружения 1-й очереди возведены, через них пропускаются расходы реки, а другая часть русла ограждается перемычками и возводятся бетонные сооружения 2-ой очереди.

Смешанная компоновка. При такой компоновке бетонные сооружения размещаются частично в русле и на берегу (в пойме) или в русле на всей его ширине и частично на берегу (в пойме).

Выбор варианта компоновки ГЭС в каждом конкретном случае определяется природными условиями участка расположения ГЭС, обеспечением благоприятных условий эксплуатации, сокращения сроков строительства, стоимости гидроузла и производится на основании технико-экономического сопоставления вариантов.

В качестве примера на рис. 4.2 приведена компоновка Киевской ГЭС. В состав бетонных сооружений, расположенных на правом берегу, входят: русловое здание ГЭС с 20 горизонтальными капсульными гидроагрегатами суммарной установленной мощностью 360 МВт со среднегодовой выработкой 0,64 млрд. кВт·ч в год, совмещенное с поверхностными водосбросами, однокамерный шлюз. Земляная плотина, перекрывающая русло, и левобережная дамба имеют общую длину около 54 км. Максимальный напор ГЭС 11,8 м, расчетный – 7,6 м. Расчетный максимальный паводковый расход, пропускаемый через сооружения ГЭС, составляет 14,8 тыс.м3/с, а максимальный удельный расход на водобое равен 90 м3/с. В условиях песчаного основания для обеспечения надежной работы руслового здания ГЭС предусмотрены противофильтрационные мероприятия, включающие глинистый понур, шпунтовую завесу под фундаментной плитой здания ГЭС, за которой устроен дренаж, соединенный с нижним бьефом. Для недопущения опасных размывов дна при работе ГЭС и пропуске паводков в нижнем бьефе выполнено крепление, включающее водобой и рисберму из железобетонных плит толщиной от 2,5 до 1,5 м и ковша, заполненного каменной наброской, которая при образовании воронки размыва предотвратит дальнейший размыв.



В комплекс сооружений входит Киевская ГАЭС, расположенная на берегу Киевского водохранилища в 3,5 км от ГЭС.

ГЭС с приплотинными зданиями сооружаются на равнинных и горных реках, преимущественно на скальном основании при напорах от 30 до 300 м и характеризуются тем, что здание ГЭС размещается за плотиной.

От типа, высоты и других параметров плотины, природных условий створа зависят длина напорных водоводов и компоновка здания ГЭС.

В условиях равнинных рек компоновки ГЭС с приплотинными зданиями аналогичны компоновкам с русловыми зданиями и отличаются от них тем, что перед зданием находится бетонная плотина с водоприемником и напорными водоводами (станционная плотина), отделенная от здания ГЭС деформационным швом. Интересным примером такой компоновки является Днепрогэс (рис. 4.3).

После строительства Кременчугской ГЭС с водохранилищем полезной емкостью 9 км3 , обеспечивающим сезонное регулирование стока Днепра, расчетный максимальный паводковый расход Днепрогэса в условиях зарегулированного стока снизился с 40 до 25,9 тыс.м3 /с, благодаря чему освободилась часть водосливных отверстий (пролетов) плотины, что позволило использовать их в качестве водоприемных отверстий второго здания ГЭС общей мощностью 888 МВт и увеличить общую мощность Днепрогэса до 1595 МВт. К каждой турбине вода подается из двух пролетов (водоприемных отверстий) по двум железобетонным напорным трубопроводам, опирающимся на плотину и отделенным деформационным швом от здания ГЭС.

а

б в

Рис. 4.3. Днепрогэс: а – план; б, в – машинный зал соответственно ГЭС-1 и ГЭС-2; 1 – здание ГЭС-1; 2 – гравитационная плотина; 3 – здание ГЭС-2; 4 – шлюз

При более высоких напорах обычно в условиях горных рек компоновки ГЭС с бетонными плотинами и плотинами из грунтовых материалов имеют особенности.

Компоновки с бетонными плотинами, как правило, выполняются русловыми или смешанными с размещением здания ГЭС за гравитационной, контрфорсной или арочной плотинами и характеризуются расположением напорных водоводов в теле плотины, на ее верховой или низовой гранях (рис. 4.4). В состав гидроузла входят станционная плотина с приплотинным зданием ГЭС, водосбросная плотина и глухие плотины, которые могут быть бетонными и из грунтовых материалов.

В узких створах возникают трудности с размещением здания ГЭС и водосброса. В этих случаях водосброс может быть выполнен отдельно на берегу (например Чиркейская ГЭС) или в виде поверхностного водосброса, расположенного на перекрытии приплотинного здания ГЭС (например Токтогульская ГЭС). Крайне редко машинный зал ГЭС располагают в теле плотины (например ГЭС Монтейнар во Франции, где машинный зал с четырьмя гидроагрегатами общей мощностью 320 МВт размещается в полости внутри арочно-гравитационной плотины высотой 153 м и длиной по гребню 210 м, а поверхностный водосброс на низовой грани плотины). Такие встроенные здания, размещаемые в полости внутри бетонной плотины (см. рис. 4.4,г), составляют отдельную группу и условно относятся к приплотинным зданиям.

а б

в
г

Рис. 4.4. Компоновки ГЭС с приплотинными зданиями и бетонными плотинами: а – русловая компоновка – ГЭС «Три ущелья»: 1– водосливная плотина; 2 – левобережная и правобережная станционные плотины и здания ГЭС; 3 – судоподъемник; 4 – двухниточный шлюз; б – смешанная компоновка – ГЭС Итайпу: 1 – левобережная плотина из грунтовых материалов; 2 – канал для пропуска строительных расходов; 3 – временный водосброс; 4 – низовая перемычка; 5 – здание ГЭС; 6 – верховая перемычка; 7 и 8 – бетонная плотина; 9 – водосброс; 10 – правобережная плотина из грунтовых материалов; в – варианты расположения напорных водоводов ГЭС с приплотинным зданием; г – вариант со встроенным зданием

б

Рис. 4.5. Красноярская ГЭС: а – план; б – поперечный разрез станционной плотины и здания ГЭС; 1 – здание ГЭС; 2 – станционная плотина; 3 – водосливная плотина; 4–7 – глухие плотины; 8 – монтажная площадка; 9 и 10 – верховой и низовой судоходные пути; 11 – поворотное устройство; 12 – судовая камера; 13 – волнозащитная стенка

В относительно широких створах строительство обычно ведется в две очереди с возведением в первую очередь бетонной водосбросной плотины (или части плотины) и пропуском строительных расходов через стесненное русло реки, а после его перекрытия во вторую очередь – через водосбросные отверстия в возведенной водосбросной плотине и завершением строительства сооружений ГЭС.

В узких створах для пропуска строительных расходов выполняется строительный туннель, который в условиях эксплуатации может использоваться для устройства паводкового водосброса.

а
б

Рис. 4.6. Чиркейская ГЭС: а – поперечный разрез; б – план; 1 – плотина; 2 – водоприемник; 3 – напорные водоводы; 4 – здание ГЭС; 5 – подъездной туннель; 6 – эксплуатационный водосброс, совмещенный со строительным туннелем

Примерами ГЭС с приплотинным зданием в относительно широком створе являются самая крупная в мире ГЭС «Три ущелья» мощностью 18,2 млн. кВт (см.рис. 4,4,а ), ГЭС Итайпу мощностью 12,6 млн.кВт·ч, (см. рис. 4,4,б ), Саяно-Шушенская ГЭС мощностью 6.4 млн. кВт, Красноярская ГЭС мощностью 6 млн. кВт со среднегодовой выработкой 20,4 млрд. кВт·ч. В состав сооружений Красноярской ГЭС входят гравитационная плотина длиной 1065 м и максимальной высотой 125 м (рис. 4.5), состоящая из станционной и глухих плотин, водосливной плотины, обеспечивающей пропуск паводкового расхода 14,6 тыс.м3 /с (с учетом трансформации паводка в водохранилище при форсировке уровня), а также судоподъемник.

Примером ГЭС с приплотинным зданием в узком створе является Чиркейская ГЭС мощностью 1,0 млн.кВт с арочной плотиной длиной по гребню 333 м и максимальной высотой 233 м и с двухрядным расположением гидроагрегатов в здании (рис. 4.6). На левом берегу выполнен туннельный эксплуатационный водосброс, рассчитанный на пропуск паводкового расхода 3,5 тыс.м3 /с.

На Токтогульской ГЭС мощностью 1,2 млн.кВт с приплотинным зданием в узком створе с двухрядным расположением гидроагрегатов в здании ГЭС и гравитационной плотиной максимальной высотой 216 м в теле плотины размещены напорные водоводы ГЭС и глубинный водосброс, а на низовой грани плотины поверхностный водосброс (рис. 4.7).

В узких створах с бетонными плотинами и из грунтовых материалов могут применяться компоновки с береговым и подземным зданием ГЭС.

Основные компоновки ГЭС с плотинами из грунтовых материалов приведены на рис. 4.8. При этом здание ГЭС может размещаться непосредственно за плотиной (а) или применяются наиболее часто используемые компоновки с береговым (б) и подземным (в) зданием ГЭС.

Для компоновок ГЭС с плотинами из грунтовых материалов характерно береговое размещение эксплуатационных водосбросов для пропуска паводковых расходов: в виде берегового поверхностного водосброса с быстротоком или туннельного водосброса. Для пропуска строительных расходов обычно используются строительные туннели.


Комплекс гидроэнергетических сооружений, включающий водоприемник, водоводы, здание ГЭС, выполненные вне плотины, называют напорно-станционным узлом (НСУ) ГЭС.

Примером высоконапорной ГЭС с приплотинным зданием и плотиной из грунтовых материалов является Нурекская ГЭС мощностью 2,7 млн. кВт со среднегодовой выработкой 11.2 млрд. кВт·ч в год (рис. 4.9). К турбинам вода подводится от водоприемников башенного типа напорными туннелями. Для ускорения ввода в эксплуатацию ГЭС первые три гидроагрегата задействовали при пониженном напоре, когда плотина была возведена только на высоту 143 м (при проектной высоте 300 м), для чего были выполнены временный водоприемник и туннель. В период строительства пропуск расходов реки осуществлялся через три яруса строительных туннелей, расположенных на левом берегу. Паводковые расходы в эксплуатационный период (максимальный расход 5.4 тыс.м3/с обеспеченностью 0,01%) пропускаются через туннельный водосброс, соединенный с концевым участком строительного туннеля третьего яруса.


Деривационные ГЭС применяются при широком диапазоне напоров, начиная от нескольких метров на малых ГЭС и до 2000 м (ГЭС Райссек в Австрии имеет напор 1767 м), и строятся обычно в предгорных и горных районах.

ГЭС с безнапорной деривацией может применяться при незначительных колебаниях уровня воды в водохранилище. На таких ГЭС из водоприемника вода подается в деривационный канал, проходящий по берегу (при соответствующих топографических и геологических условиях), или в безнапорный деривационный туннель.

ГЭС с напорной деривацией применяется как при больших, так и при незначительных колебаниях уровня воды в водохранилище. На таких ГЭС из водоприемника вода подается в напорный деривационный трубопровод, расположенный на поверхности, или в напорный деривационный туннель (рис. 4.10). Сооружения деривационной ГЭС, а также ГЭС с плотинно-деривационной (комбинированной) схемой, при которой напор создается плотиной и деривацией (см. 2.4), включают:

Головной узел, который предназначен для создания подпора в реке и направления потока в деривацию, а также очистки воды от наносов, сора, в ряде случаев от льда, шуги, состоит из плотины, водосброса, водоприемника, отстойника, промывных и ледосбросных сооружений.

Головные узлы с низконапорными плотинами, сооружаемые обычно на горных реках, имеют водохранилища с ограниченным объемом, в связи с чем предусматриваются мероприятия для предотвращения их заполнения наносами. Для этого в составе гидроузла водосбросная бетонная плотина, оборудованная затворами, выполняется с низким порогом и достаточной шириной водосбросного фронта, что обеспечивает при пропуске паводковых расходов промыв наносов. При большом количестве в воде взвешенных наносов, которые могут привести к быстрому истиранию проточной части гидротурбин, устраиваются отстойники в виде камеры, в которой при уменьшении скорости потока взвешенные частицы оседают на дно, а затем удаляются.

Глухая часть плотины может выполняться бетонной или из грунтовых материалов. Водоприемник может быть совмещен с плотиной или выполнен на берегу.

Водохранилища обычно осуществляют суточное регулирование и характеризуются небольшой глубиной сработки, что позволяет выполнить как безнапорную, так и напорную деривацию.

Головные узлы с плотинами среднего и высокого напора характеризуются большим объемом водохранилища (с возможностью осаждения наносов в пределах мертвого объема) и значительной сработкой водохранилища при осуществлении сезонного или многолетнего регулирования стока. В связи с этим водоприемники выполняются глубинными, а деривация – напорной.

Плотины могут выполняться бетонными (гравитационными, контрфорсными, арочными) с устройством в них водосброса и во многих случаях водоприемника ГЭС, а также из местных материалов с размещением водосброса и водоприемника вне тела плотины.

Деривационные водоводы и сооружения на их трассе (деривация), осуществляющие подвод воды к станционному узлу, делятся на напорные (туннели, трубопроводы) и безнапорные (каналы, туннели), по трассе которых могут устраиваться водосбросы, дюкеры и другие сооружения.

Станционный узел включает при безнапорной деривации напорный бассейн с аванкамерой, водоприемником, аварийным водосбросом и независимо от типа деривации общие сооружения: турбинные напорные водоводы, при необходимости с уравнительным резервуаром, здание ГЭС, отводящие водоводы в виде канала или туннеля (напорного или безнапорного), распределительное устройство.


В составе станционного узла здания ГЭС выполняются береговыми открытыми, подземными и реже полуподземными.

Характерным примером плотинно-деривационной ГЭС является Ингурская ГЭС (Грузия) мощностью 1,3 млн.кВт (рис. 4.11), в состав головного узла которой входит арочная плотина высотой 271 м с паводковым водосбросом, рассчитанным на расход 1900 м3 /с. Водохранилище имеет полезный объем 0,68 км3 при глубине сработки 70 м. От глубинного водоприемника, рассчитанного на расход 450 м3 /с, начинается деривационный напорный туннель диаметром 9,5 м и длиной 15,3 км. В состав станционного узла ГЭС входят уравнительный резервуар шахтного типа, помещение дисковых затворов, туннельные турбинные водоводы, подземное здание ГЭС, отводящий безнапорный туннель и канал общей длиной 3,2 км.

Суммарный статический напор Ингурской ГЭС, равный 409,5 м, образуется из напоров, создаваемых плотиной (226 м) и деривацией (183,5 м). Расчетный напор равен 325 м, а среднегодовая выработка – 5.4 млрд. кВт·ч в год.

Типы зданий ГЭС и их основные элементы. Здание ГЭС представляет собой гидротехническое сооружение, в котором с помощью гидросилового, электрического, гидромеханического, вспомогательного оборудования, систем управления механическая энергия воды преобразуется в электроэнергию, передаваемую в энергосистему потребителям. При этом должны быть обеспечены надежная работа, прочность и устойчивость здания ГЭС при действии внешних нагрузок (гидростатического и гидродинамического давления, фильтрационного давления, температурных, сейсмических воздействий и др.), а также нагрузок от работы технологического оборудования.

Тип и конструктивные решения зданий ГЭС определяются общей компоновкой сооружений ГЭС и основным энергетическим оборудованием. В зависимости от напора и условий работы в зданиях ГЭС устанавливаются поворотно-лопатные, осевые, радиальноосевые, диагональные и ковшевые турбины.

Нижнюю часть здания, где размещается проточный тракт, включая спиральную камеру, отсасывающую трубу, турбинное оборудование и ряд технологических систем, называют агрегатной частью, а верхняя часть здания с верхним строением, где размещаются машинный зал с гидрогенераторами и крановым оборудованием, а также силовые трансформаторы, крановое оборудование водоприемника (в русловых зданиях), ремонтных затворов отсасывающих труб и другое технологическое оборудование, – надагрегатной частью.

На конструкцию и размеры здания ГЭС в плане и по высоте, заглубление в основание существенно влияют габариты гидроагрегата, спиральной (турбинной) камеры и отсасывающей трубы, заглубление оси рабочего колеса гидротурбины под уровень нижнего бьефа, количество гидроагрегатов. Как правило, в здании ГЭС устанавливаются два гидроагрегата и больше (например в здании Саратовской ГЭС – 23 гидроагрегата, Каневской ГЭС – 24 гидроагрегата), редко – один гидроагрегат, так как при его ремонте ГЭС полностью прекращает работу.





В состав здания ГЭС входит монтажная площадка, на которой производятся монтаж гидроагрегатов и их ремонт в период эксплуатации. В монтажной площадке также размещается часть вспомогательных систем.

Многоагрегатные здания ГЭС, имеющие значительную длину, делятся на отдельные секции деформационными швами: температурно-осадочными при мягком основании, температурными при скальном основании. Так, здание Волжской ГЭС мощностью 2530 МВт с 22 гидроагрегатами разделено на секции длиной 60 м, в каждой из которых размещаются по два агрегатных блока с поворотно-лопастными турбинами с диаметром рабочего колеса 9,3 м (при расчетном напоре 19 м и мощности 115 МВт).

Блок монтажной площадки обычно от здания также отделяется швом.

Агрегатная часть здания ГЭС характеризуется значительной массивностью. Она воспринимает гидростатическое и гидродинамическое давление в проточной части, нагрузки от оборудования и вышерасположенных конструкций здания и передает их на основание. Геологические условия оказывают значительное влияние на конструкцию агрегатной части здания. Так, при скальном основании она существенно облегчается. В агрегатной части здания размещаются системы технического водоснабжения, осушения проточной части, дренажа здания и др.

Конструкция агрегатной части зависит от типа здания ГЭС.

В соответствии с типами ГЭС различают:

Русловые здания ГЭС, которые входят в состав напорного фронта и воспринимают напор со стороны верхнего бьефа. В русловых зданиях с напором до 50 м могут применяться поворотно-лопастные турбины, а при напоре более 30 м – также радиально-осевые.

Приплотинные здания, располагающиеся за плотиной, воспринимающей напор со стороны верхнего бьефа. Подвод воды к ним осуществляется турбинными водоводами. В приплотинных зданиях с напором от 30 до 300 м применяются в основном радиальноосевые турбины, а также в определенных условиях высоконапорные поворотно-лопастные (например на ГЭС Орлик при диапазоне напоров 45–71 м и мощности агрегата 90 МВт) и диагональные (например Зейская ГЭС при диапазоне напоров 78,5–97 м и мощности агрегата 215 МВт).

Береговые здания, используваемые при плотинной и деривационной схемах ГЭС, практически не отличаются от приплотинных зданий.

Подземные здания, которые также применяются при плотинной и деривационной схемах ГЭС, имеют отводящие туннели (напорные или безнапорные). В зданиях деривационных ГЭС с большими напорами используются радиально-осевые турбины до напора 600 м и ковшевые турбины начиная с напоров 500 м и выше. Все приведенные типы зданий применяются как в схемах ГЭС, так и ГАЭС.

Основные схемы агрегатной части зданий ГЭС (кроме подземных зданий ГЭС) представлены на рис. 4.12. На схемах I и II приведены агрегатные части низконапорного руслового здания ГЭС с вертикальными гидроагрегатами и изогнутыми отсасывающими трубами соответственно несовмещенного и совмещенного типа с глубинными водосбросными водоводами, а на схемах IV и V – с горизонтальными и наклонными гидроагрегатами совмещенного типа с поверхностным водосбросом.

На схеме III приведена агрегатная часть приплотинного или деривационного здания ГЭС с металлической турбинной (спиральной) камерой круглого сечения.

На схеме VII показана агрегатная часть деривационной ГЭС с гидроагрегатами малой мощности с применением вертикальных конических, а также раструбных отсасывающих труб. При этом для отвода воды выполняется отводящий канал прямоугольного сечения.

На схеме VI приведена агрегатная часть деривационной ГЭС с ковшевыми (активными) гидротурбинами, которая отличается отсутствием турбинных камер обычного типа и отсасывающих труб, благодаря чему агрегатная часть значительно упрощается.

Параметры надагрегатной части здания ГЭС зависят от конструкции и размеров верхнего строения.

При верхнем строении закрытого типа с высоким машинным залом в пределах здания ГЭС и монтажной площадки обеспечиваются при различных климатических условиях наиболее благоприятные условия эксплуатации, монтажа и ремонта основного оборудования. При этом высота и ширина машзала определяются как условиями размещения в нем оборудования, так и доставки его кранами машзала в агрегатный блок или на монтажную площадку при монтаже или ремонте основного оборудования.

Верхнее строение обычно состоит из несущего каркаса в виде системы колонн, на которые опираются подкрановые балки и фермы перекрытия, стен, плит и кровли перекрытия.

Большинство зданий ГЭС выполняются с высоким машинным залом (рис. 4.13 – 4.15).

При верхнем строении полуоткрытого типа с пониженным машинным залом в пределах здания ГЭС и монтажной площадки основное оборудование размещается в машинном зале, кроме основного крана большой грузоподъемности, вынесенного за его пределы. При монтаже и ремонте сборка и разборка гидроагрегатов производятся через съемное перекрытие над каждым гидроагрегатом (в виде съемных крышек) при помощи внешнего козлового крана. На крупных ГЭС в большинстве случаев в пониженном машинном зале устанавливается кран уменьшенной грузоподъемности, при помощи которого выполняются монтажные и ремонтные работы, не требующие использования основного крана (рис. 4.16 – 4.18).

При верхнем строении открытого типа без машинного зала гидрогенератор располагается под съемной крышкой, а остальное оборудование в технологических помещениях агрегатной части здания ГЭС и монтажной площадки. Монтажные и ремонтные работы выполняются при помощи внешнего крана. Учитывая усложнение условий эксплуатации, монтажа и ремонта гидроагрегатов, такой тип верхнего строения применяется крайне редко.

Русловые здания ГЭС (рис. 4.19). На русловые здания ГЭС действуют те же нагрузки, что и на бетонные плотины, и к ним предъявляются те же требования по прочности, устойчивости, фильтрационным условиям в основании, которые обеспечиваются при соответствующих габаритах здания, противофильтрационных и дренажных устройствах в основании. Русловые здания делятся на несовмещенные и совмещенные с водосбросом.

В связи с тем, что поток, поступающий в отводящий канал от несовмещенного и особенно совмещенного здания, обладает избыточной кинетической энергией для недопущения размыва в отводящем канале выполняется крепление (см. рис. 4.2).

Рис. 4.17. Русловое водосливное здание с горизонтальными капсульными гидроагрегатами Киевской ГЭС: а – поперечный разрез; б – машинный зал; 1 – козловой кран; 2 – капсульный гидроагрегат; 3 – паз сороудерживающей решетки

Сопряжение здания ГЭС с примыкающей к нему земляной плотиной или с берегом осуществляется с помощью сопрягающих устоев в виде подпорных стенок (гравитационных, уголковых, контрфорсных, ячеистых и других типов).

В русловых зданиях несовмещенного типа с вертикальными гидроагрегатами проточная часть включает водоприемник, спиральную камеру в основном таврового сечения и отсасывающую трубу, от размеров которых зависят размеры агрегатного блока. При этом ширина блока с поворотно-лопастной турбиной может составить 2,6–3,2 диаметра рабочего колеса турбины (D1). Размеры водоприемника определяются необходимым заглублением под УМО, обеспечением благоприятных гидравлических условий на входе и при сопряжении со спиральной камерой, допустимыми скоростями потока на решетках (обычно составляющими 0,8–1,2 м/с), размещением решетки, аварийно-ремонтного и ремонтного затворов, пазы которых могут быть совмещены с пазами решетки. На входном участке водоприемника, как правило, выполняется раструб с забральной стенкой, чем достигается плавный подвод воды.

Заглубление здания ГЭС под уровень нижнего бьефа зависит от необходимого заглубления оси рабочего колеса под уровень нижнего бьефа (высоты отсасывания) и размеров отсасывающей трубы, а также инженерно-геологических условий основания.

Главные повышающие трансформаторы устанавливаются на перекрытии над технологическими помещениями со стороны нижнего бьефа.

Русловые здания совмещенного типа, в которых, помимо турбинных водоводов, размещаются также водосбросы, могут быть выполнены: с донными водосбросами, размещаемыми ниже спиральной камеры над отсасывающими трубами – Волгоградская, Новосибирская, Каховская ГЭС (рис. 4.19,б );

  • с донными водосбросами и высоким водоприемником турбинных водоводов – Чебоксарская, Головная ГЭС (см. рис. 4.13);
  • с глубинными водосбросами, расположенными выше спиральной камеры (между ней и генератором) – Иркутская, Саратовская, Дубоссарская ГЭС (см. рис. 4.16);
  • водосливные с вертикальными гидроагрегатами – Павловская, Плявинская (см. рис. 4.14), Днестровская ГЭС;
  • водосливные с горизонтальными гидроагрегатами – Киевская, Каневская ГЭС (см. рис. 4.17);
  • бычковые с размещением гидроагрегатов в бычках водосливной плотины – Орточальская (Грузия), Уэллс (США).

Здания совмещенного типа позволяют существенно сократить длину водосливных плотин или вообще отказаться от них, что особенно важно при возведении ГЭС на мягких основаниях, обеспечивая снижение стоимости строительства. Так, на Новосибирской ГЭС длина водосливной плотины сократилась на 50%. На Иркутской, Павловской, Плявинской, Днестровской ГЭС пропускная способность водосбросов здания ГЭС обеспечивает пропуск расчетного паводкового расхода без водосливных плотин. В совмещенных зданиях ГЭС водоприемник включает турбинный водоприемник и водоприемную часть водосбросов.

К недостаткам таких зданий можно отнести усложнение конструкции, значительные дополнительные гидродинамические нагрузки при работе водосбросов, усложнение условий эксплуатации.

В зданиях совмещенного типа с горизонтальными капсульными агрегатами, применяемых при низких напорах (до 25 м), благодаря отсутствию спиральной камеры и использованию прямоосной конической отсасывающей трубы достигаются значительное уменьшение ширины агрегатного блока и повышение заложения подошвы здания. Кроме того, улучшение геометрии и гидравлических условий проточного тракта, включая подводящую часть без спиральной камеры сложной конфигурации и замену изогнутой отсасывающей трубы прямоосной конической, обладающей более высокими энергетическими показателями, позволяет снизить потери напора, увеличить на 20–30% пропускную способность горизонтального агрегата и соответственно при той же мощности уменьшить диаметр рабочего колеса. В целом применение горизонтальных капсульных агрегатов по сравнению с вертикальными сокращает ширину агрегатного блока на величину до 35%, повышает к.п.д. на 2–4%.

Рис. 4.19. Русловые здания. Поперечные разрезы и виды с нижнего бьефа: а – Кременчугской и б – Каховской ГЭС: 1 – фундаментная плита; 2 – металлический шпунт; 3 – донный водосброс

Поверхностный водослив обеспечивает благоприятные условия пропуска паводка, позволяет во многих случаях отказаться от устройства водосливной плотины. В таких зданиях металлическая капсула с заключенным в ней гидрогенератором размещается в проточной части здания со стороны верхнего бьефа. Доступ в капсулу осуществляется через специальные полости в вертикальном бычке. Монтаж и демонтаж гидроагрегата производятся с помощью мостового крана, который размещается в машинном зале под водосливом, и наружным козловым краном через люки со съемными крышками в пороге водослива (см. рис. 4.17).

На ряде малых ГЭС генератор размещается открыто в машзале, ось гидроагрегата выполняется наклонно, а подвод воды к турбине осуществляется по водоводу, проходящему под генератором (см. рис. 4.12, схема V)

Русловые здания бычкового типа применяются крайне редко, в основном на реках, несущих большое количество наносов, обеспечивая благоприятные условия пропуска через водосливные пролеты льда, наносов и паводковых расходов. На ГЭС бычкового типа Уэллс (США) мощностью 870 МВт с напором 30 м в бычках плотины установлены 10 гидроагрегатов, расчетный паводковый расход составляет 33,4 тыс.м3 /с. К недостаткам таких ГЭС можно отнести отсутствие общего машинного зала, удлинение технологических коммуникаций и в целом усложнение условий эксплуатации.

Приплотинные здания ГЭС. В приплотинных зданиях ГЭС вода подводится к турбинам по турбинным водоводам (металлическим или сталежелезобетонным), проходящим в основном в теле или на низовой грани бетонных плотин, с размещением водоприемника на верховой грани плотин, зданием ГЭС, непосредственно примыкающим к плотине, и отдельным швом (см. рис. 4.3, 4.5–4.7). При прямолинейных в плане плотинах здание ГЭС также прямолинейно, при его расположении за арочными или арочно-гравитационными плотинами здание ГЭС может иметь в плане прямолинейное или криволинейное очертание по дуге, соответствующей очертанию низовой грани плотины.

Для обеспечения плавного подвода воды от турбинного водовода к спиральной камере перед ней обычно выполняется горизонтальный участок водовода длиной (4–6)D 1 , в пределах которого устраиваются технологические помещения с размещением на верхнем перекрытии повышающих трансформаторов.

При плотинах из местных материалов вода подводится к турбинам по турбинным водоводам, проходящим через тело плотины или в обход её в виде туннелей или открытых водоводов, с отдельным водоприемником в верхнем бьефе и с размещением здания ГЭС на некотором расстоянии от плотины.

В отличие от русловых приплотинные здания не воспринимают напор верхнего бьефа, а давление, передаваемое на них через турбинные водоводы, невелико, что позволяет облегчить конструкцию здания.

Спиральные камеры таких зданий имеют круглое сечение и выполняются металлическими или сталежелезобетонными с металлической облицовкой.

Ширина агрегатного блока с вертикальными радиально-осевыми (или диагональными) гидротурбинами определяется размерами турбинной (спиральной) камеры и составляет не менее 4D 1 (диаметров рабочего колеса).

Характерным примером приплотинного здания является здание Красноярской ГЭС общей длиной вместе с монтажной площадкой 428,5 м, где установлено 12 гидроагрегатов суммарной мощностью 6 млн. кВт (см. рис. 4.5). В стационарной плотине выполнен водоприемник с 24 водозаборными отверстиями. Вода подводится к агрегату по двум сталежелезобетонным водоводам диаметром 7,5 м.

На Чиркейской ГЭС с арочной плотиной, возведенной в узком ущелье, уменьшение длины приплотинного здания достигается двухрядным расположением гидроагрегатов (см. рис. 4.6). Оба машзала обслуживаются одним мостовым краном, который по подкрановым путям в монтажной площадке переводится из одного машзала в другой. Размещение отсасывающих труб в два яруса приводит к дополнительному заглублению здания ГЭС.

При размещении сооружений ГЭС в узком ущелье, где сложно выполнить береговые водосбросы, водосбросы проходят в теле плотины, на ее низовой грани и на перекрытии здания. Такая компоновка выполнена на Токтогульской ГЭС с двухрядным расположением агрегатов в здании ГЭС (см. рис. 4.7). При этом повышающие трансформаторы размещаются в закрытом помещении. При такой компоновке поток, проходя по водосбросу, носком-трамплином отбрасывается от здания ГЭС на значительное расстояние, а гашение энергии в основном происходит за счет аэрации потока.

Характерным примером приплотинного здания, расположенного за плотиной из местных материалов, с подводом воды туннелями является здание Нурекской ГЭС (см. рис. 4.9, 4.18). В здании ГЭС установлено 9 агрегатов мощностью по 300 МВт с максимальным напором 275 м. Подвод воды осуществляется по трем туннелям диаметром 9 м с разделением каждого на 3 турбинных водовода. Здание выполнено с пониженным машзалом со съемными крышками в перекрытии над гидроагрегатами и монтажной площадкой. В машзале и в помещении затворов для обслуживания и ремонта оборудования установлены мостовые краны, а для монтажа и полного демонтажа гидроагрегата и шарового затвора используется козловой кран.

Здания деривационных ГЭС с радиально-осевыми турбинами практически не отличаются от приплотинных зданий. При установке ковшевых турбин изменяется конструкция агрегатной части здания ГЭС. Вместо турбинной камеры выполняется напорный распределительный трубопровод в виде металлического кожуха, на котором крепятся сопла турбины с механизмами регулирования расхода, а вода от турбины отводится по безнапорному лотку. В зависимости от мощности гидротурбины и количества сопел ось гидроагрегата может располагаться вертикально или горизонтально. Благодаря тому, что у ковшевых турбин рабочее колесо располагается выше максимального уровня нижнего бьефа, при их установке существенно уменьшается заглубление здания.

В зданиях высоконапорных деривационных ГЭС при большой длине или разветвлении напорных водоводов перед турбинами устанавливаются в зависимости от напора и диаметра дисковые или шаровые затворы (при напорах более 600 м только шаровые), позволяющие перекрыть трубопроводы и остановить гидроагрегат в аварийной ситуации в случае отказа направляющего аппарата, а также при нормальной эксплуатации и проведении ремонтных работ.

В последнее время вместо предтурбинных затворов находят применение встроенные кольцевые затворы, размещаемые между статорными колоннами и лопатками направляющего аппарата, что позволяет уменьшить габариты здания, массу и стоимость оборудования.

Подземные здания ГЭС. В последние десятилетия широкое развитие получило строительство подземных зданий ГЭС. Из них наиболее крупные построены в Канаде: Черчилл-Фолс мощностью 5225 МВт с напором 320 м, Мика – 2610 МВт с напором 183 м. С подземными зданиями выполнены Ингурская ГЭС мощностью 1300 МВт в Грузии (рис. 4.20), Верхнетуломская – 248 МВт и Усть-Хантайская – 441 МВт в России и др. В подземных зданиях проведение строительных работ не зависит от климатических условий, что имеет важное значение при строительстве в северных регионах с суровой зимой или в тропиках с длительным сезоном дождей. Подземные здания также применяются в тех случаях, когда из-за неблагоприятных природных условий в ущелье (крутых оползнеопасных склонах, высоком уровне воды при пропуске паводка), а также большого заглубления оси рабочего колеса турбины под уровень нижнего бьефа строительство открытых зданий может привести к нарушению устойчивости береговых склонов, к резкому увеличению объемов работ.


К недостаткам подземных зданий можно отнести: в случае неблагоприятных инженерно-геологических условий значительное усложнение производства подземных работ; усложнение условий эксплуатации в связи с удлинением технологических коммуникаций, более сложными схемами выдачи мощности; увеличение затрат электроэнергии на собственные нужды, что вызвано необходимостью постоянной вентиляции помещений, их освещения и др.

Размеры и компоновка подземных зданий ГЭС зависят в первую очередь от параметров и размещения гидросилового, электрического и гидромеханического оборудования. На крупных ГЭС, где размеры выработок машинных залов достигают больших размеров (пролет до 30 м и более), в машинном зале обычно размещают основное гидросиловое оборудование, которое обслуживается мостовыми кранами, а предтурбинные затворы выполняются в отдельном помещении, расположенном на некотором расстоянии от машзала. При длинных отводящих туннелях ремонтные затворы нижнего бьефа и обслуживающие их механизмы для перекрытия отсасывающих труб также размещаются в отдельно расположенном помещении. При большом количестве агрегатов устраивают несколько отводящих туннелей, чаще всего безнапорных или напорных (при больших колебаниях уровней нижнего бьефа) с уравнительным резервуаром. При коротких туннелях, отводящих воду отдельно от каждого агрегата, затворы нижнего бьефа устанавливаются в выходных порталах туннелей.

Одним из важных факторов, определяющих компоновку зданий подземных ГЭС, является выбор схемы размещения главных повышающих трансформаторов: в отдельном подземном помещении (ГЭС Кариба в Зимбабве, ГЭС Яли во Вьетнаме), в расширенном подземном машзале (ГЭС Тимет I и II в Австралии), открыто на поверхности земли на площадках ОРУ (Борисоглебская, Ингурская).

Открытое расположение трансформаторов используется в основном при неглубоком размещении подземного здания (на глубине до 200–300 м) и благоприятных топографических и геологических условиях площадки. При этом токопроводы от генераторов к трансформаторам, имеющие значительную длину, прокладываются в специальных галереях и шахтах с выполнением специальных мероприятий по отводу тепла в связи с большим тепловыделением токопроводами.

Передача электроэнергии на ОРУ и ЗРУ от главных трансформаторов при их подземном расположении осуществляется при напряжении 110–500 кВ маслонаполненными кабелями с проведением специальных мероприятий по отводу тепла, а в последнее время также элегазовыми токопроводами.

В подземных зданиях предусматриваются монтажные площадки, которые в большинстве случаев являются продолжением машзала, располагаясь, как правило, в его торце и соединяясь с поверхностью земли при помощи транспортных туннелей и грузовых шахт.

Для отвода тепла и вентиляции подземных помещений здания ГЭС устанавливаются вентиляторы и кондиционеры.

Конструкции обделок машзалов зависят от инженерно-геологических условий. В большинстве машзалов выполняется несущий свод кругового очертания с увеличением толщины железобетонной обделки у пят. В достаточно прочных породах стены крепятся набрызг-бетоном, а в менее крепких устраивается сплошная бетонная или железобетонная облицовка толщиной до 0,5 м и более с укреплением анкерами, в зонах ослабленных пород – с проведением укрепительной цементации, а в ряде случаев предусматриваются дренажные мероприятия.

В подземном здании Ингурской ГЭС длиной 145,5 м, пролетом 21,2 м и высотой выломки 53,7 м установлено 5 гидроагрегатов. Вода подводится к агрегатам турбинными водоводами, расположенными в плане под углом к продольной оси агрегатов, что позволило разместить предтурбинные затворы в пределах машзала, практически без увеличения его пролета (см. рис. 4.20). Вода отводится напорным туннелем.

Полуподземные здания ГЭС. При благоприятных инженерно-геологических и топографических условиях и больших колебаниях уровня нижнего бьефа могут выполняться полуподземные здания, размещаемые в траншейных выработках, причем верхние строения машзалов могут устраиваться на поверхности земли. Возможны решения полуподземных зданий с размещением одного или нескольких агрегатов в отдельных шахтах, над которыми на поверхности земли возводится верхнее строение машзала, как на Днестровской ГАЭС.


Полуподземное здание Вилюйской ГЭС мощностью 648 МВт, выполненное в траншейной выработке глубиной 60 м, полностью размещается под поверхностью земли (рис. 4.21).

Здания малых ГЭС. К малым обычно относятся ГЭС мощностью до 10–30 МВт. Наряду с использованием гидроэнергетических ресурсов больших рек на средних и крупных ГЭС, которые в большинстве случаев требуют создания больших водохранилищ и работают в объединенных энергосистемах, широкое развитие в мире получили малые ГЭС. Такие ГЭС используют гидроэнергетический потенциал малых рек, притоков, сбросных каналов и оказывают крайне ограниченное влияние на окружающую среду. Они могут выдавать электроэнергию в энергосистему или работать на конкретного потребителя, что особенно важно для отдаленных районов, где нет развитой сети электропередач.

Малые ГЭС, как и крупные, разделяются на ГЭС с русловыми и приплотинными зданиями и деривационные.

На малых ГЭС для упрощения конструкций в зданиях с установкой вертикальных гидроагрегатов могут применяться прямоосные конические отсасывающие трубы, широкое использование находят горизонтальные агрегаты, включая капсульные, а также с наклонным расположением оси агрегата (см. рис. 4.12, схемы IV, V, VII).

На стр. 283 (фото) и на рис. 4.22 показаны деривационные ГЭС – Теребля-Рикская мощностью 27 МВт с напором 215 м и Егорлыкская мощностью 30 МВт с напором 32 м.

Похожие публикации