Экспертное сообщество по ремонту ванных комнат

Что такое синхрофазотрон. Что такое синхрофазотрон: принцип работы и полученные результаты В основу работы синхрофазотрона положен принцип

Парламентариям Великобритании понадобилось всего 15 минут, чтобы решить вопрос о государственной инвестиции размером 1 млрд. фунтов в строительство синхрофазотрона. После этого — они на протяжении одного часа бурно обсуждали стоимость кофе, ни много ни мало, в парламентском буфете. И таки решили: снизили цену на 15%.

Казалось бы, задачи-то по сложности вообще не сопоставимы, и всё по логике вещей должно было случиться с точностью до наоборот. Час — на науку, 15 минут — на кофе. Ан нет! Как выяснилось позже, большинство достопочтенных политиков оперативно дали своё сокровенное «за», совершенно не имея понятия, что такое «синхрофазотрон».

Давайте, дорогой читатель, вместе с вами восполним этот пробел знаний и не будем уподобляться научной недальновидности некоторых товарищей.

Что такое синхрофазотрон?

Синхрофазотрон — электронная установка для научных исследований — циклический ускоритель элементарных частиц (нейтронов, протонов, электронов и др). Имеет форму огромного кольца, весом более 36 тыс. тонн. Его сверхмощные магниты и ускоряющие трубки наделяют микроскопические частицы колоссальной энергией направленного движения. В недрах резонатора фазотрона, на глубине 14,5метра, происходят, по истине, фантастические преобразования на физическом уровне: например, крохотный протон получает 20 млн. электрон-вольт, а тяжёлый ион — 5 млн. эВ. И это лишь скромная толика всех возможностей!

Именно, благодаря уникальным свойствам циклического ускорителя, учённым удалось познать самые сокровенные тайны мироздания: изучить строение ничтожно малых частиц и физико-химические процессы, происходящие внутри их оболочек; воочию наблюдать реакцию синтеза; открывать природу доселе неизведанных микроскопических объектов.

Фазотрон ознаменовал новую эру научных изысканий — территорию исследований, где был бессилен микроскоп, о которой с большой осторожностью говорили даже фантасты-новаторы (их прозорливый творческий полёт не смог предугадать свершённых открытий!).

История синхрофазотрона

Изначально, ускорители были линейными, то есть не имели циклической структуры. Но вскоре физикам пришлось от них отказаться. Требования к величинам энергии увеличивались — её нужно было больше. А линейная конструкция не справлялась: теоретические расчёты показывали, что для этих значений, она должна быть неимоверной длины.

  • В 1929г. американец Э.Лоуренс делает попытки решить эту проблему и изобретает циклотрон, прообраз современного фазотрона. Испытания проходят успешно. Через десять лет, в 1939г. Лоуренс удостаивается Нобелевской премии.
  • В 1938г. в СССР вопросом создания и усовершенствования ускорителей начинает активно заниматься талантливый физик В.И.Векслер. В феврале 1944г. к нему приходит революционная идея как преодолеть энергетический барьер. Свой метод Векслер называет «автофазировка». Ровно через год, эту же технологию совершенно независимо открывает Э.Макмиллан, учёный из США.
  • В 1949г в Советском Союзе под руководством В.И. Векслера и С.И. Вавилова разворачивается крупномасштабный научный проект — создание синхрофазотрона мощностью 10 млрд. электрон-вольт. На протяжении 8 лет на базе института ядерных исследований в городе Дубно на Украине группа физиков-теоретиков, конструкторов и инженеров кропотливо трудилась над установкой. Поэтому его еще называют Дубнинский синхрофазотрон.

Пуск синхрофазотрона в эксплуатацию состоялся в марте 1957г., за полгода до полёта в космос первого искусственного спутника Земли.

Какие исследования проводятся на синхрофазотроне?

Резонансный циклический ускоритель Векслера породил плеяду выдающихся открытий во многих аспектах фундаментальной физики и, в частности, в некоторых спорных и малоизученных проблемах теории относительности Эйнштейна:

  • поведение кварковой структуры ядер в процессе взаимодействия;
  • образование кумулятивных частиц в результате реакций с участием ядер;
  • изучение свойств ускоренных дейтронов;
  • взаимодействие тяжёлых ионов с мишенями (проверка стойкости микросхем);
  • утилизация Урана-238.

Результаты, полученные по этим направлениям, успешно применяются в строительстве космических кораблей, проектировании атомных электростанций, разработке робототехники и оборудования для работы в экстремальных условиях. Но самое удивительное то, что череда исследований, осуществлённых на синхрофазотроне, всё больше приближает учённых к разгадке великой тайны происхождения Вселенной.

+ фаза + элек трон) - резонансный циклический ускоритель с неизменной в процессе ускорения длиной равновесной орбиты. Чтобы частицы в процессе ускорения оставались на той же орбите , изменяется как ведущее магнитное поле , так и частота ускоряющего электрического поля. Последнее необходимо, чтобы пучок приходил в ускоряющую секцию всегда в фазе с высокочастотным электрическим полем. В том случае, если частицы ультрарелятивистские, частота обращения, при фиксированной длине орбиты, не меняется с ростом энергии, и частота ВЧ-генератора также должна оставаться постоянной. Такой ускоритель уже называется синхротроном .

В культуре

Именно этим устройством «занимался на труде» первоклассник в известной песне Аллы Пугачёвой «Песенка первоклассника». Синхрофазотрон также упоминается в комедии Гайдая «Операция Ы и другие приключения Шурика». Также это устройство показано в качестве примера применения Теории Относительности Эйнштейна в обучающем короткометражном фильме «Что такое теория относительности?». В низкоинтеллектуальных юмористических шоу, для широкой публики, часто выступает как "непонятный" научный прибор или пример высоких технологий.

Что такое синхрофазотрон?

Для начала немного углубимся в историю. Потребность в данном устройстве впервые возникла в 1938 году. Группа ученых-физиков Ленинградского ФТИ обратилась к Молотову с заявлением, что СССР нужна исследовательская база для изучения строения атомного ядра. Аргументировали данную просьбу тем, что подобная область изучения играет очень важную роль, а на данный момент Советский Союз несколько отстает от западных коллег. Ведь в Америке на то время уже имелось 5 синхрофазотронов, в СССР же ни одного. Было предложено завершить постройку уже начатого циклотрона, развитие которого приостановилось из-за слабого финансирования и отсутствия компетентных кадров.

В конце концов, было принято решение о строительстве синхрофазотрона, и во главе сего проекта стоял Векслер. Строительство было завершено в 1957 году. Так что же такое синхрофазотрон? Попросту говоря, – это ускоритель частиц. Он предает частицам огромной кинетической энергии. В его основе лежит переменчивое ведущее магнитное поле и изменяемая частота главного поля. Такое сочетание позволяет удерживать частицы на постоянной орбите. Используется это устройство для изучения разнообразнейших свойств частиц и их взаимодействия на высоких энергетических уровнях.

Аппарат имеет очень интригующие габариты: он занимает целый корпус университета, его вес равен 36 тыс. тонн, а диаметр магнитного кольца – 60 м. Довольно внушительные размеры для устройства, основной задачей которого является изучение частиц, размеры которых измеряются в микрометрах.

Принцип работы синхрофазотрона

Очень многие ученые физики пытались разработать устройство, которое давало бы возможность разгонять частицы, предавая им огромной энергии. Именно решением этой проблемы и является синхрофазотрон. Как же он работает и что лежит в основе?

Начало было положено циклотроном. Рассмотрим принцип его действия. Ионы, которые будут ускорять, попадают в вакуум, где находится дуант. В это время на ионы происходит воздействие магнитным полем: они продолжают двигаться по оси, набирая скорость. Преодолев ось и попав в следующий зазор, начинается набор ими скорости. Для большего ускорения требуется постоянный прирост радиуса дуги. При этом время прохождения будет постоянным, не смотря на увеличение расстояния. Из-за роста скорости наблюдается прирост массы ионов.

Такое явление влечет за собой потерю в наборе скорости. Это и есть основной недостаток циклотрона. В синхрофазотроне данная проблема полностью устранена – за счет изменения индукции магнитного поля с привязанной массой и одновременного изменения частоты перезарядки частиц. То есть, энергия частиц наращивается за счет электрического поля, задавая направление за счет наличия магнитного поля.

В 1957 году СССР осуществил научный и технический прорыв в нескольких областях: произвел успешный запуск искусственного спутника Земли, а за несколько месяцев до данного события в Дубне начал работать синхрофазотрон. Что это такое и для чего нужна подобная установка? Этот вопрос волновал не только граждан СССР в то время, но и весь мир. Разумеется, в научном кругу понимали, что это такое, но обычные граждане приходили в недоумение, когда слышали это слово. Даже сегодня большинство людей не понимают сути и принципа синхрофазотрона, хотя не раз слышали это слово. Давайте разберемся, что это за устройство и для чего применялось.

Для чего нужен синхрофазотрон?

Разрабатывали эту установку для изучения микромира и познания структуры элементарных частиц, законов их взаимодействия друг с другом. Сам способ познания был чрезвычайно прост: поломать частицу и посмотреть, что находится внутри. Однако как можно поломать протон? Для этого и был создан синхрофазотрон, который разгоняет частицы и ударяет их о мишень. Последняя может быть неподвижной, а в современном Большом адронном коллайдере (он является усовершенствованной версией старого доброго синхрофазотрона) мишень является подвижной. Там пучки протонов с огромной скоростью движутся друг к другу и ударяются.

Считалось, что эта установка позволит осуществить научный прорыв, открыть новые элементы и способы получения атомной энергии из дешевых источников, которые превосходили бы по эффективности обогащенный уран и являлись бы более безопасными и менее вредными для окружающей среды.

Военные цели

Конечно, военные цели также преследовались. Создание атомной энергии в мирных целях - это лишь оправдание для наивных. Не зря проект синхрофазотрона вышел с грифом "Совершенно секретно", ведь строительство этого ускорителя осуществлялось в рамках проекта создания новой атомной бомбы. С его помощью хотели получить усовершенствованную теорию ядерных сил, которая необходима для расчета и создания бомбы. Правда, оказалось все гораздо сложнее, и даже сегодня эта теория отсутствует.

Что такое синхрофазотрон простыми словами?

Если обобщить, то данная установка представляет собой ускоритель элементарных частиц, протонов в частности. Синхрофазотрон состоит из немагнитной закольцованной трубы с вакуумом внутри, а также мощных электромагнитов. Поочередно магниты включаются, направляя заряженные частицы внутри вакуумной трубы. Когда они с помощью ускорителей достигают максимальной скорости, их направляют в специальную мишень. Протоны в нее ударяются, разбивают саму мишень и разбиваются при этом сами. Осколки разлетаются в разные стороны и оставляют следы в пузырьковой камере. По этим следам группа ученых анализирует их природу.

Так было ранее, однако в современных установках (типа Большого адронного коллайдера) применяются более современные детекторы вместо пузырьковой камеры, которые дают больше информации об осколках протонов.

Сама по себе установка является достаточно сложной и высокотехнологичной. Можно сказать, что синхрофазотрон - это "дальний родственник" современного Большого адронного коллайдера. По сути, его можно назвать аналогом микроскопа. Оба эти прибора предназначаются для изучения микромира, вот только принцип изучения разный.

Подробнее об устройстве

Итак, мы уже знаем, что такое синхрофазотрон, а также то, что здесь частицы разгоняются до огромных скоростей. Как оказалось, для разгона протонов до огромной скорости необходимо создать разность потенциалов в сотни миллиардов вольт. К сожалению, сделать такое человечеству не под силу, поэтому частицы придумали разгонять постепенно.

В установке частицы двигаются по кругу, и на каждом обороте их подпитывают энергией, получая ускорение. И хотя подобная подпитка невелика, за миллионы оборотов можно набрать необходимую энергию.

В основу работы синхрофазотрона положен именно этот принцип. Разогнанные до небольших значений элементарные частицы запускаются в туннель, где располагаются магниты. Они создают перпендикулярное кольцу магнитное поле. Многие ошибочно полагают, что эти магниты ускоряют частицы, но на самом деле это не так. Они лишь меняют их траекторию, заставляя двигаться по окружности, однако не ускоряют их. Само ускорение происходит на определенных разгонных промежутках.

Разгон частиц

Подобный промежуток ускорения представляет собой конденсатор, на который подается напряжение с высокой частотой. Кстати, это основа всей работы данной установки. Пучок протонов влетает в данный конденсатор в момент, когда напряжение в нем равно нулю. По мере того как частицы пролетают по конденсатору, напряжение успевает возрасти, что подгоняет частицы. На следующем кругу это повторяется, так как частота переменного напряжения специально подбирается равной частоте обращения частицы по кольцу. Следовательно, синхронно и в фазе осуществляется ускорение протонов. Отсюда и название - синхрофазотрон.

Кстати, при таком способе ускорения есть определенный полезный эффект. Если вдруг пучок протонов летит быстрее необходимой скорости, то он влетает в разгонный промежуток при отрицательном значении напряжения, из-за чего немного притормаживает. Если скорость движения меньшая, то эффект будет обратным: частица получает ускорение и догоняет основной сгусток протонов. В результате плотный и компактный пучок частиц движется с одной скоростью.

Проблемы

В идеале частицы необходимо разогнать до максимально возможной скорости. И если протоны на каждом круге движутся быстрее и быстрее, то почему нельзя их разогнать до максимально возможной скорости? Причин несколько.

Во-первых, рост энергии предполагает увеличение массы частиц. К сожалению, релятивистские законы не позволяют ни один элемент разогнать выше скорости света. В синхрофазотроне скорость протонов практически достигает скорости движения света, что сильно увеличивает их массу. В результате их становится трудно удерживать на круговой орбите радиуса. Еще со школы известно, что радиус движения частиц в магнитном поле обратно пропорционален массе и прямо пропорционален величине поля. И так как масса частиц растет, то радиус необходимо увеличивать и делать магнитное поле сильнее. Эти условия и создают ограничения в реализации условий для исследования, так как технологии даже сегодня ограничены. Пока что не удается создать поле с индукцией выше нескольких тесла. Поэтому и делают туннели большой длины, ведь при большом радиусе тяжелые частицы на огромной скорости удается удерживать в магнитном поле.

Вторая проблема - движение с ускорением по окружности. Известно, что заряд, который движется с определенной скоростью, излучает энергию, то есть теряет ее. Следовательно, частицы при ускорении постоянно теряют часть энергии, и чем выше их скорость, тем больше энергии они расходуют. В какой-то момент наступает равновесие между получаемой энергией на участке разгона и потерей этого же количества энергии за один оборот.

Исследования, проводимые на синхрофазотроне

Теперь мы понимаем, какой принцип лежит в основе работы синхрофазотрона. Он позволил провести ряд исследований и совершить открытия. В частности ученые смогли изучить свойства ускоренных дейтронов, поведение квантовой структуры ядер, взаимодействие тяжелых ионов с мишенями, а также разработать технологию утилизации урана-238.

Применение результатов, полученных в ходе испытаний

Полученные по этим направлениям результаты применяются на сегодняшний день в строительстве космических кораблей, проектировании атомных электростанций, а также при разработке специального оборудования и робототехники. Из всего этого следует, что синхрофазотрон - такое устройство, вклад в науку которого переоценить сложно.

Заключение

В течение 50 лет подобные установки служат на благо науки и активно применяются учеными всей планеты. Ранее созданный синхрофазотрон и подобные ему установки (они создавались не только в СССР) являются всего лишь одним звеном в цепочке эволюции. Сегодня появляются более совершенные устройства - нуклотроны, обладающие огромной энергией.

Одним из самых совершенных среди подобных устройств является Большой адронный коллайдер. В отличие от действия синхрофазотрона, он встречными курсами сталкивает два пучка частиц, в результате чего выделяемая от столкновения энергия во много раз превышает энергию на синхрофазотроне. Это открывает возможности для более точного изучения элементарных частиц.

Пожалуй, теперь вы должны понимать, что такое синхрофазотрон и для чего он вообще нужен. Эта установка позволила сделать целый ряд открытий. Сегодня из него сделали ускоритель электронов, и на данный момент он работает в ФИАНе.

Ты - не раб!
Закрытый образовательный курс для детей элиты: "Истинное обустройство мира".
http://noslave.org

Материал из Википедии - свободной энциклопедии

Синхрофазотро́н (от синхро низация + фаза + элек трон) - резонансный циклический ускоритель с неизменной в процессе ускорения длиной равновесной орбиты. Чтобы частицы в процессе ускорения оставались на той же орбите , изменяется как ведущее магнитное поле , так и частота ускоряющего электрического поля. Последнее необходимо, чтобы пучок приходил в ускоряющую секцию всегда в фазе с высокочастотным электрическим полем. В том случае, если частицы ультрарелятивистские, частота обращения, при фиксированной длине орбиты, не меняется с ростом энергии, и частота ВЧ-генератора также должна оставаться постоянной. Такой ускоритель уже называется синхротроном .

Напишите отзыв о статье "Синхрофазотрон"

Примечания

См. также

Отрывок, характеризующий Синхрофазотрон

Мы вышли из дома вместе, как будто я тоже собиралась идти с ней на рынок, а за первым же поворотом дружно расстались, и каждая уже пошла своей дорогой и по своим делам…
Дом, в котором всё ещё жил отец маленькой Вэсты был в первом у нас строящемся «новом районе» (так называли первые многоэтажки) и находился от нас примерно в сорока минутах быстрой ходьбы. Ходить я очень любила всегда, и это не доставляло мне никаких неудобств. Только я очень не любила сам этот новый район, потому что дома в нём строились, как спичечные коробки – все одинаковые и безликие. И так как место это только-только ещё начинало застраиваться, то в нём не было ни одного дерева или любой какой-нибудь «зелени», и оно было похожим на каменно-асфальтовый макет какого-то уродливого, ненастоящего городка. Всё было холодным и бездушным, и чувствовала я себя там всегда очень плохо – казалось, там мне просто не было чем дышать...
И ещё, найти номера домов, даже при самом большом желании, там было почти что невозможно. Как, например, в тот момент я стояла между домами № 2 и № 26, и никак не могла понять, как же такое может быть?!. И гадала, где же мой «пропавший» дом № 12?.. В этом не было никакой логики, и я никак не могла понять, как люди в таком хаосе могут жить?
Наконец-то с чужой помощью мне удалось каким-то образом найти нужный дом, и я уже стояла у закрытой двери, гадая, как же встретит меня этот совершенно мне незнакомый человек?..
Я встречала таким же образом много чужих, неизвестных мне людей, и это всегда вначале требовало большого нервного напряжения. Я никогда не чувствовала себя комфортно, врываясь в чью то частную жизнь, поэтому, каждый такой «поход» всегда казался мне чуточку сумасшедшим. И ещё я прекрасно понимала, как дико это должно было звучать для тех, кто буквально только что потерял родного им человека, а какая-то маленькая девочка вдруг вторгалась в их жизнь, и заявляла, что может помочь им поговорить с умершей женой, сестрой, сыном, матерью, отцом… Согласитесь – это должно было звучать для них абсолютно и полностью ненормально! И, если честно, я до сих пор не могу понять, почему эти люди слушали меня вообще?!.

Похожие публикации