Экспертное сообщество по ремонту ванных комнат

Вирус бактериофаг впервые описал ученый. История открытия бактериофагов

Полужидкие среды содержат гелеобразующее вещество в низкой (0,3 – 0,7 %) концентрации и имеют мягкую желеподобную консистенцию. Такие среды пригодны для изучения подвижности и хемотаксиса клеток, культивирования микроаэрофилов.

Сыпучие среды представляют собой массу в той или иной степени измельченного и увлажненного сырья (чаще всего, растительного). Основное их назначение – использование в пищевой промышленности (получение соевого соуса или рисовой водки), сельском хозяйстве (силосование кормов) и т. д. В бактериологической практике чаще всего используются сухие питательные среды, которые получают в промышленных масштабах – это триптические гидролизаты дешевых непищевых продуктов (рыбные отходы, мясокостная мука, технический казеин) с добавлением микробиологического агара. Сухие среды являются достаточно дешевым сырьем, могут храниться в течение длительного времени, удобны при транспортировке, имеют относительно стандартный состав, на их основе быстро и легко готовить питательные среды.

Положение микроорганизмов в системе живого мира

В природе имеются три царства: животные, растения и протисты. Между животными и растениями есть существенные различия: в способе питания (животные – гетеротрофы, растения – автотрофы), по строению клетки и клеточных оболочек, способности к активному передвижению, способности синтезировать определенные вещества.

Царство протистов – главным образом одноклеточные.

В соответствии с современными принципами классификации, все протисты в зависимости от строения клетки, делятся на эукариотические (истинноядерные) и прокариотические (доядерные). К эукариотическим микроорганизмам относятся водоросли, грибы и простейшие, к прокариотическим – бактерии. Выделяют особое царство – вирусы.

Т.о., микроорганизмы в таксономическом отношении это очень неоднородная группа, представители которой отличаются друг от друга морфологией, строением, физиологией, типами конструктивного и энергетического метаболизма, а также особенностями питания клетки, но общим их признаком являются малые размеры особей и одинаковая техника изучения.

Перечислим существенные особенности микроорганизмов:

1. Малые размеры их клеток . Это свойство определяет морфологические, физиологические, биохимические и другие особенности микроорганизмов.

2. Высокая метаболическая активность . У микроорганизмов из-за малых размеров очень велико отношение площади поверхности клетки к ее объему, что создает благоприятные условия для активного обмена с внешней средой. Показано, что метаболическая активность микроорганизмов в расчете на единицу биомассы намного выше, чем у более крупных клеток растений и животных.

3. Высокая пластичность их метаболизма .

Во-первых, данное свойство приводит к быстрому приспособлению к меняющимся условиям окружающей среды. Для микроорганизмов характерно большее разнообразие ферментных систем и более мобильные способы регуляции обмена веществ, чем для макроорганизмов. Из-за малых размеров, клетки микроорганизмов могут вместить в себя только несколько сотен тысяч белковых молекул. Поэтому ненужные в данных условиях существования ферменты не могут содержаться про запас в клетках микроорганизмов. Они синтезируются только тогда, когда соответствующее питательное вещество (субстрат) появляется в среде. Такие ферменты называются индуцибельными , они могут составлять до 10 % общего белка, содержащегося в клетке в данный момент времени.

Во-вторых, следствием высокой пластичности метаболизма микроорганизмов является, по определению В. И. Вернадского, их «всюдность». Микроорганизмы можно обнаружить в арктических областях, горячих источниках, высоких слоях атмосферы, шахтах с большим содержанием сероводорода и этим они отличаются от всех растений и животных, которые часто обитают лишь на отдельных континентах или в географических зонах.

4. Способность к быстрому размножению . В оптимальных условиях, например, бактерии Escherichia coli могут делиться каждые 20 мин.

5. Морфологически слабо дифференцированы . Среди них можно различить лишь ограниченное число форм. В основном это либо сферические формы, либо прямые и изогнутые палочки.Отсутствует дифференцировка на ткани и органы. Это также делает их непохожими на растения и животные.

6.Огромный контраст между внешним морфологическим единообразием и чрезвычайным многообразием метаболических процессов. В то время как животные и растения нуждаются в молекулярном кислороде, многие группы прокариот способны жить без доступа воздуха в анаэробных условиях, получая необходимую для роста энергию в результате брожения или анаэробного дыхания. Другие группы прокариот обладают способностью использовать энергию света и строят нужные им вещества либо из органических соединений, либо из углекислоты (двуокиси углерода). Некоторые бактерии могут получать энергию путем окисления различных неорганических соединений или элементов. Среди бактерий широко распространена также способность к фиксации молекулярного азота.

Вирусология

Вопрос 1. Открытие бактериофагов, бактериофагия, классификация бактериофагов, особенности взаимодействия с клеткой вирулентных и умеренных фагов, три состояния бактериофага

Бактериофаги (или просто фаги) − вирусы бактерий.

Бактериофагия – процесс взаимодействия фагов с бактериями, заканчивающийся очень часто их разрушением (от лат. bacteriophaga – пожира­ющий бактерии).

Явление бактериофагии открыл Ф. Туорт. В 1915 г. он наблюдал «остекленение» (лизис) колоний белого стафилококка. Полученный Туортом фильтрат биомассы таких колоний вызывал аналогичный эффект у свежевыросших нормальных колоний, а на газоне ага­ровых культур стафилококка вызывал появление точечных прозрачных (стериль­ных) участков.

Явление бактериофагии наблюдали многие ученые, но приоритет открытия фагов (1916) принад­лежит Ф. Д"Эреллю – канадскому ученому, работавшему в Париже в Институте Пастера. Феликс Д"Эрелль задумался над вопросом: почему возбудитель дизентерии, высевающийся в ее начале в большом количестве, в конце заболевания очень часто перестает выделяться? Ученый к свежей бульонной культуре дизентерийной палочки стал добавлять по нескольку капель фильтрата испражнений больного. После одного из таких посевов Д"Эрелль обнаружил агент, способный разрушать дизентерийные бактерии. При добавлении к мутной бульонной культуре он вызвал ее просветление, а при добавлении к культуре, засеянной на плотную среду, появлялись прозрачные (стерильные) пятна - колонии. Способность вызывать такие пятна и размножаться при повторных посевах дали основание считать его живым корпускулярным агентом. Д"Эрелль назвал его Bacteriophagum intestinale, т. е. выделенный из кишечника пожира­тель бактерий.

Последующие наблюдения показали, что бактериофаги распространены повсеместно. Они встречаются всюду, где есть бактерии - в почве, воде, кишечном тракте человека и животных, гнойных выделениях и т. п. Особенно много фагов в сточных водах; из этого источника можно выделить практически любой фаг.

Классификация бактериофагов

Фаги, как и вирусы позвоночных, беспозвоночных и расте­ний, по содержанию нуклеиновых кислот подразделяются на ДНК- и РНК-содержащие, а по характеру взаимодействия с бак­териями – на вирулентные и умеренные с полноценным и де­фектным геномами.

По спектру действия на бактерии фаги подразделяются на

поливалентные , лизирующие бактерии нескольких видов;

монофаги , лизирующие бактерии только одного вида;

типоспецифические фаги (типовые, Т-фаги), которые избирательно лизируют отдельные варианты бактерий внутри вида.

По способности вызывать инфекцию различают фаги инфекционные , т. е. способные вызвать разные формы фаговой инфекции, и неинфекционные (вегетативные), или незрелые фаги, находящиеся еще в стадии размножения. В свою очередь инфекционные фаги разделяют на покоящиеся (находящиеся вне клетки), вирулент­ные способные вызвать продуктивную форму инфекции, и умеренные фаги − способные вызывать не только продуктивную, но и редуктивную фаговую инфекцию.

По размерам различают фаги мелкие, средние и крупные. Чем крупнее фаги, тем больше у них генов и сложнее их жизненный цикл. К самым маленьким относятся фаги М13 и φX174.

Выделяют пять основных морфологических типов бактериофагов:

─ тип I − ДНК-содержащие нитевидные фаги, лизирующие бактерии, содержащие F-плазмиды;

─ тип II − фаги, состоящие из головки и рудимента хвоста. Геном большинства из них образован молекулой РНК и лишь у фага φX174- однонитевой ДНК;

─ Типа III − фаги, имеющие короткий хвост (например, Т-фаги 3 и 7);

─ Тип IV − фаги с несокращающимся хвостом и двухнитевой ДНК (например, Т-фаги 1 и 5);

─ Типа V − фаги, имеющие ДНК-геном, сокращающийся чехол хвоста, который заканчивается базальной пластиной (например, Т-фаги 2 или 4).

Типичный бактериофаг может существовать в трех состояниях: профага, вегетативного фага и зрелого фага. В зрелом состоянии фаги (зрелый фаг) существуют вне клетки – хозяина, метаболически они инертны. После адсорбции на клетке-хозяине часть фаговой частицы проникает внутрь клетки, где начинает размножаться. Такая размножающаяся внутри клетки частица отличается во многих отношениях от зрелого фага; ее называют вегетативным фагом вследствие присущей ей почти безграничной способности к воспроизведению. Умеренные фаги, характеризуются способностью существовать в третьем состоянии – в состоянии профага , когда фаг вместо репликации обратимо взаимодействует с генетической системой клетки-хозяина, интегрируясь в хромосому или сохраняясь в виде плазмиды. Таким образом, вирусный геном реплицируется синхронно с ДНК хозяина и делением клетки, а подобное состояние фага называется профагом. Таким образом, профаг – внутриклеточное состояние фага в условиях, когда его литические функции подавлены.

Вопрос 2. Пути передачи вирусов животных и человека (вертикальная и горизонтальная передача), особенности эпидемиологии вирусных инфекций (источники инфекции, пути проникновения вирусов), классификация вирусных инфекций, эпидемический процесс

Экологическая ниша вирусов – это многокомпонентная система взаимосвязанных элементов, включающая клетку, организм, популяцию хозяина, переносчиков, другие вирусы и внешнюю среду. Для сохранения вируса как биологического вида необходима его последовательная передача от хозяина к хозяину. Передача происходит по горизонтальному и вертикальному направлениям, что имеет место не только в популяциях человека и животных, но и среди бактерий, насекомых, растений, грибов.

Горизонтальная передача – рассеивание возбудителей среди восприимчивых хозяев с использованием различных механизмов и путей, во многом определяемых средой обитания и особенностями жизнедеятельности организма-хозяина.

Вертикальная передача – это передача возбудителя от родителей потомству, которая также может осуществляться различными путями, и предполагает сохранение вируса в ряду поколений.

Бактериофаги в природных условиях встречаются в тех местах, где есть чувствительные бактерии (в воде, почве, выделениях человека и животных), которые инфицируются вирусом при случайных контактах и распространяются водными потоками или путями, используемыми хозяином. Применение бактериофагов в качестве лечебных препаратов значительно увеличило интенсивность циркуляции вирусов бактерий в биосфере. Возможно распространение бактериофагов воздушным путем, что создает определенные трудности при работе с бактериальными культурами в научно-исследовательских лабораториях.

Вирусы насекомых инфицируют хозяина в процессе его питания и размножения. Различают трасспермальную, трансовариальную и трансстадийную (в процессе метаморфоза) передачи вируса. Распространяются вирусы в процессе миграций насекомых.

Распространение вирусов позвоночных осуществляется с использованием механизмов, которые реализуются различными путями, и часто включают внешнюю среду и промежуточных хозяев вируса. Важную роль в распространении вирусов играют миграционные процессы, наблюдаемые среди людей и животных.

Распространение вирусов в человеческой популяции имеет свои особенности. В соответствии с четырьмя основными типами локализации возбудителя в организме (дыхательные пути, желудочно-кишечный тракт, кровь, наружные покровы) выделены несколько механизмов передачи вирусов.

Трансмиссивный механизм – передача с помощью биологических переносчиков. При любом варианте такой передачи вирус черпается переносчиком из внутренних сред донора и внедряется во внутреннюю среду реципиента.

Парентеральный механизм – передача вирусов через кровь. Вирусы, циркулирующие в крови, могут передаваться в процессе переливаний крови, при использовании загрязненных шприцев и других медицинских инструментов (искусственный путь), в процессе сексуальных контактов (половой путь) и другими путями.

Алиментарный (энтеральный) механизм – вирус проникает через слизистые оболочки органов пищеварения. Разновидностью алиментарного механизма является фекально-оральный механизм передачи вируса.

Аэрогенный механизм –входными воротами инфекции являются слизистые органов дыхания. Реализуется воздушно-капельным или пылевым путем.

Контактный механизм – реализуется через кожные покровы. Такой механизм передачи могут использовать очень немногие вирусы. Так, например, вирус бешенства может проникать в организм животного и человека при ослюнении кожных покровов. Слюна собак содержит гиалуронидазу, которая облегчает проникновение вируса в кровь через кожу.

Бактериофаги или фаги (от др.-греч. φᾰγω – «пожираю») – вирусы, избирательно поражающие бактериальные клетки. Чаще всего бактериофаги размножаются внутри бактерий и вызывают их лизис. Как правило, бактериофаг состоит из белковой оболочки и генетического материала.

История

Английский бактериолог Фредерик Туорт в статье 1915 года описал инфекционную болезнь стафилококков, инфицирующий агент проходил через фильтры, и его можно было переносить от одной колонии к другой. Независимо от Фредерика Туорта французско-канадский микробиолог Феликс Д’Эрелль 3 сентября 1917 года сообщил об открытии бактериофагов. Наряду с этим известно, что российский микробиолог Николай Фёдорович Гамалея ещё в 1897 году впервые наблюдал явление лизиса бактерий (сибиреязвенной палочки) под влиянием перевиваемого агента.

Бактериофаги незримо присутствуют повсюду в нашем мире – в океане, почве, глубоководных источниках, питьевой воде и пище. Они – наиболее представленная форма жизни на Земле – от 10 30 до 10 32 фаговых частиц в биосфере, – и играют ключевую роль в поддержании баланса всех исследованных экосистем. Бактериофаги являются естественными регуляторами и борцами с бактериями и обеспечивают динамическое равновесие в природе, сохраняя относительное постоянство микробного пейзажа в природе и ограничивая рост популяции бактерий. Бактериофаги присутствуют даже в нашей пище – ежедневное поедание бактериофагов с пищей, в которой они присутствуют естественным образом, регулирует микробный баланс в организме человека.

Знаменитый ученый Д, Эрелль представил миру бактериофаги как естественные антибактериальные агенты и предложил использовать их для терапии – еще до открытия антибиотиков.

Классификация

Различают две группы бактериофагов: умеренные и вирулентные. Умеренные фаги медленно размножаются внутри пораженной бактериальной клетки, передаются внутри бактериальной колонии из поколения в поколение, периодически разрушая микробные клетки. Такой эффект называется лизогенным. Вирулентные фаги, попав в клетку микроба начинают стремительно размножаться, приводя к быстрой гибели зараженной клетки. Такой эффект называется литическим.

Какие проблемы решают препараты бактериофагов?

1.Эффективная борьба с бактериальными инфекциями

Позволяют эффективно бороться с бактериальными инфекциями без риска развития осложнений на печень, почки и другие жизненно важные органы, подвергающиеся повреждающему действию обычных антибактериальных средств.

2.Усиление действия антибиотиков

При совместном применении с антибиотиком могут усиливать эффективность последнего.

3.Уничтожают только вредоносные бактерии

Уничтожают вредоносные бактерии и сохраняют собственные, «полезные» для нас бактерии (кишечную микрофлору, микрофлору половых органов), не вызывая дисбактериоз.

4.Эффективная замена антибиотикам

При отсутствии эффекта от применения антибиотиков (при устойчивости бактерий к антибиотикам) и наличии хронической, рецидивирующей инфекции, бактериофаги являются отличным выбором в качестве препаратов антибактериальной терапии.

5. Минимум противопоказаний

При наличии противопоказаний к применению антибиотиков (при антибиотико ассоциированных диареях, нарушении работы печени и почек и др.) – бактериофаги незаменимы.

6. Бактериофаги могут применяться как внутрь, так и использоваться для наружного применения

Бактериофаги могут применяться как внутрь, так и использоваться для наружного применения, что решает проблему не только на уровне всего организма, но и местно в месте локализации инфекции.

Механизм действия бактериофагов

Вирус проникает в клетку патогенной бактерии, внедряется в ее геном и начинает размножаться. После накопления внутри бактериальной клетки определенного количества новых вирусных частиц (вирионов) клетка разрушается, вирусы выходят наружу и заражают новые бактериальные клетки.

Жизненный цикл бактериофага

  1. Фаг приближается к бактерии, и хвостовые нити связываются с рецепторными участками на поверхности бактериальной клетки.
  2. Хвостовые нити изгибаются и «заякоривают» шипы и базальную пластинку на поверхности клетки; хвостовой чехол сокращается, заставляя полый стержень входить в клетку; этому способствует фермент лизоцим, который находится в базальной пластинке; таким образом, нуклеиновая кислота (ДНК или РНК) вводится внутрь клетки.
  3. Нуклеиновая кислота фага кодирует синтез ферментов фага, используя для этого белоксинтезирующий аппарат хозяина.
  4. Фаг тем или иным способом инактивирует ДНК и РНК хозяина, а ферменты фага совсем расщепляют её; РНК фага подчиняет себе клеточный аппарат.
  5. Нуклеиновая кислота фага реплицируется и кодирует синтез новых белков оболочки.
  6. Новые частицы фага, образовавшиеся в результате спонтаной самосборки белковой оболочки вокруг фаговой нуклеиновой кислоты; под контролем РНК фага синтезируется лизоцим.
  7. Лизис клетки: клетка лопается под воздействием лизоцима; высвобождается около 200-1000 новых фагов; фаги инфицируют другие бактерии.
  8. Стадии 1-7 по времени занимают около 30 минут; этот период называется латентным периодом.

Две стороны медали

Достоинства

Бактерии теряют чувствительность к действию антибиотиков. Фармацевтическая промышленность неустанно синтезирует другие. Однако известно, что возможности синтеза антибиотиков ограничены. К действию бактериофагов антибиотики приспосабливаются очень тяжело, а, как утверждают специалисты, к комплексу из нескольких бактериофагов микробы не могут выработать резистентность и вовсе. Кроме того, бактериофаги практически не имеют побочного действия, реже вызывают аллергические явления, могут сочетаться с любыми препаратами. Бактериофаги в настоящий момент хорошо зарекомендовали себя при лечении урологических заболеваний, гнойных процессов в хирургии, а также при лечении инфекционных заболеваний кишечника у новорожденных детей.

Недостатки

  1. К сожалению, недостатков у медицинских бактериофагов тоже немало. Самая главная проблема проистекает из достоинства – высокой специфичности фагов. Каждый бактериофаг инфицирует строго определенный тип бактерий, даже не таксономический вид, а ряд более узких разновидностей, штаммов. Условно говоря, как если бы сторожевая собака начинала лаять только на одетых в черные плащи громил двухметрового роста, а на лезущего в дом подростка в шортах никак не реагировала. Поэтому для нынешних фаговых препаратов нередки случаи неэффективного применения. Препарат, сделанный против определенного набора штаммов и прекрасно лечащий стрептококковую ангину в Смоленске, может оказаться бессильным против по всем признакам такой же ангины в Кемерове. Болезнь та же, вызывается тем же микробом, а штаммы стрептококка в разных регионах оказываются различными.

Для максимально эффективного применения бактериофага необходима точная диагностика патогенного микроба, вплоть до штамма. Самый распространенный сейчас метод диагностики – культуральный посев – занимает много времени и требуемой точности не дает. Быстрые методы – типирование с помощью полимеразной цепной реакции или масс-спектрометрии – внедряются медленно из-за дороговизны аппаратуры и более высоких требований к квалификации лаборантов. В идеале подбор фагов-компонентов лекарственного препарата можно было бы делать против инфекции каждого конкретного пациента, но это дорого и на практике неприемлемо.

  1. Другой важный недостаток фагов – их биологическая природа. Кроме того, что бактериофаги для поддержания инфекционности требуют особых условий хранения и транспортировки, такой метод лечения открывает простор для множества спекуляций на тему «посторонней ДНК в человеке». И хотя известно, что бактериофаг в принципе не может заразить человеческую клетку и внедрить в нее свою ДНК, поменять общественное мнение непросто.
  2. Из биологической природы и довольно большого, по сравнению с низкомолекулярными лекарствами (теми же антибиотиками), размера вытекает третье ограничение – проблема доставки бактериофага в организм. Если микробная инфекция развивается там, куда бактериофаг можно приложить напрямую в виде капель, спрея или клизмы, – на коже, открытых ранах, ожогах, слизистых оболочках носоглотки, ушей, глаз, толстого кишечника – то проблем не возникает.
  3. Но если заражение происходит во внутренних органах, ситуация сложнее. Случаи успешного излечения инфекций почек или селезенки при обычном пероральном приеме препарата бактериофага известны. Но сам механизм проникновения относительно крупных (100 нм) фаговых частиц из желудка в кровоток и во внутренние органы изучен плохо и сильно разнится от пациента к пациенту. Бактериофаги бессильны и против тех микробов, которые развиваются внутри клеток, например возбудителей туберкулеза и проказы. Через стенку человеческой клетки бактериофаг пробраться не может.

Нужно отметить, что противопоставлять применение бактериофагов и антибиотиков в медицинских целях не следует. При совместном их действии наблюдается взаимное усиление противобактериального эффекта. Это позволяет, например, снизить дозы антибиотиков до значений, не вызывающих выраженных побочных эффектов. Соответственно, и механизм выработки у бактерий устойчивости к обоим компонентам комбинированного лекарства почти невозможен.

Расширение арсенала противомикробных препаратов дает больше степеней свободы в выборе методики лечения. Таким образом, научно обоснованное развитие концепции применения бактериофагов в противомикробной терапии – перспективное направление. Бактериофаги служат не столько альтернативой, сколько дополнением и усилением в борьбе с инфекциями.

Применение

В медицине

Одной из областей использования бактериофагов является антибактериальная терапия, альтернативная приёму антибиотиков. Например, применяются бактериофаги: стрептококковый, стафилококковый, клебсиеллёзный, дизентерийный поливалентный, пиобактериофаг, коли, протейный и колипротейный и другие. В настоящее время их применяют для лечения бактериальных инфекций, которые не чувствительны к традиционному лечению антибиотиками, особенно в республике Грузия. Обычно, применение бактериофагов сопровождается большим, чем антибиотики, успехом там, где присутствуют биологические мембраны, покрытые полисахаридами, через которые антибиотики обычно не проникают. В настоящее время терапевтическое применение бактериофагов не получило одобрения на Западе, хотя и применяются фаги для уничтожения бактерий, вызывающих пищевые отравления, таких, как листерии. В многолетнем опыте в объёме крупного города и сельской местности доказана необычайно высокая лечебная и профилактическая эффективность дизентерийного бактериофага.

В биологии

Бактериофаги применяются в генной инженерии в качестве векторов, переносящих участки ДНК, возможна также естественная передача генов между бактериями посредством некоторых фагов (трансдукция).

Фаговые векторы обычно создают на базе умеренного бактериофага λ, содержащего двухцепочечную линейную молекулу ДНК. Левое и правое плечи фага имеют все гены, необходимые для литического цикла (репликации, размножения). Средняя часть генома бактериофага λ (содержит гены, контролирующие лизогению, то есть его интеграцию в ДНК бактериальной клетки) не существенна для его размножения и составляет примерно 25 тысяч пар нуклеотидов. Данная часть может быть заменена на чужеродный фрагмент ДНК. Такие модифицированные фаги проходят литический цикл, но лизогения не происходит. Векторы на основе бактериофага λ используют для клонирования фрагментов ДНК эукариот (то есть более крупных генов) размером до 23 тысяч пар нуклеотидов (т. п. н.). Причём, фаги без вставок – менее 38 т. п. н. или, напротив, со слишком большими вставками – более 52 т. п. н. не развиваются и не поражают бактерии.

Поскольку размножение бактериофага возможно только в живых клетках, бактериофаги могут быть использованы для определения жизнеспособности бактерий. Данное направление имеет большие перспективы, поскольку, одним из основных вопросов при разных биотехнологических процессах является определение жизнеспособности используемых культур. С помощью метода электрооптического анализа клеточных суспензий была показана возможность изучения этапов взаимодействия фаг-микробная клетка.

И.М. ЩЕРБЕНКОВ , к.м.н., ЦЭЛТ, Москва

Бактерии, резистентные к большинству или ко всем из всех известных антибиотиков, вызывают все более серьезные проблемы. Это увеличивает риск возврата медицинского сообщества к проблемам того периода, когда антибиотики были неизвестны и широко распространены неизлечимые инфекции и эпидемии. Несмотря на интенсивную работу ведущих химиков и фармацевтов всего мира, за последние 30 лет резко снизился синтез новых классов антибиотиков, и в ближайшее время не предвидится поступления в клиническую практику принципиально новых представителей антибактериальных средств. Есть надежда, что вновь обнаруженная возможность полностью секвенировать микробные геномы и определять молекулярные основы патогенности откроет новые пути лечения инфекционных заболеваний, но все с большим рвением идет поиск других подходов к этой проблеме.

Одним из результатов такого поиска является вновь возникший интерес к возможностям терапевтического использования бактериофагов (от бактерии и греч. phagos пожиратель; букв. пожиратели бактерий) специфических вирусов, которые атакуют только бактерии и убивают патогенные микроорганизмы. Бактериофаги обладают способностью проникать в бактериальные клетки, репродуцироваться в них и вызывать их лизис.

История изучения и применения бактериофагов

В 1896 г. Эрнест Ханкин сообщил, что воды рек Ганга и Джамна в Индии обладают значительной антибактериальной активностью, которая сохранялась после прохождения через фарфоровый фильтр с порами очень малого размера, но устранялась при кипячении. Наиболее подробно изучал он действие неизвестной субстанции на Vibrio cholerae и предположил, что она ответственна за предупреждение распространения эпидемий холеры, вызванных употреблением воды из этих рек. Однако в последующем он не объяснил этот феномен.

В 1898 г. впервые перевиваемый лизис бактерий (сибиреязвенной палочки) наблюдал русский микробиолог Н.Ф. Гамалея.

Официально бактериофаги были открыты почти через 20 лет независимо друг от друга Ф. Туортом совместно с А. Лондом и Ф. д"Эрелем как фильтрующиеся, передающиеся агенты разрушения бактериальных клеток. Английский ученый Ф. Туорт в 1915 г. описал явление лизиса у гнойного стафилококка и открыл первый «вирус, пожирающий бактерии», когда наблюдал любопытное дегенеративное изменение  лизис в культурах стафилококков из лимфы теленка. С его именем связано название «феномен Туорта». В 1917 г. Феликс д’Эрель делает аналогичное открытие, именно он дал им название «бактериофаги», используя суффикс «фаг» не в его прямом смысле «есть», а в смысле развития за счет чего-то.

В 1980-е гг. эффективность лечения антибиотиками значительно понизилась, бактерии активно вырабатывают лекарственную устойчивость. Чтобы создать новый сильнодействующий антибиотик, фармацевтические компании сегодня должны в среднем потратить 10 лет и 800 млн долл. Это послужило поводом к повышенному интересу к фаговой терапии. В начале 2000-х гг. Гленн Моррис, сотрудник Университета Мэриленд (США), совместно с НИИ бактериофагов, микробиологии и вирусологии в Тбилиси наладил испытания фаговых препаратов для получения лицензии на их применение в США. И уже в июле 2007 г. бактериофаги одобрены для использования в США. На протяжении последних нескольких лет исследования свойств бактериофагов проводятся в России, Грузии, Польше, Франции, Германии, Финляндии, Канаде, США, Великобритании, Мексике, Израиле, Индии, Австралии.

Характеристика фагов

Применение современных электронных микроскопов, а также усовершенствование методов приготовления препаратов для электронной микроскопии позволили более детально изучить тонкую структуру фагов. Оказалось, что она весьма разнообразна и у многих фагов более сложна, чем структура вирусов растений и ряда вирусов человека и животных. Бактериофаги, как и другие вирусы, несут свою генетическую информацию в форме ДНК либо РНК. Большинство бактериофагов имеют хвостики, кончики которых прикреплены к конкретным рецепторам, таким как молекулы углеводов, белков и липополисахаридов на поверхности бактерии-хозяина. Бактериофаг впрыскивает свою нуклеиновую кислоту в хозяина, где он использует генетический механизм хозяина, чтобы реплицировать свой генетический материал, и считывает его, чтобы сформировать новый фагокапсульный материал для создания частичек нового фага. Число фагов, произведенных в течение единичного цикла инфекции (размер выхода), варьирует между 50 и 200 новыми фаговыми частицами.

Лизогенизация бактерий сопровождается изменением их морфологических, культуральных, ферментативных, антигенных и биологических свойств. Так, например, нетоксигенные штаммы коринебактерий дифтерии в результате лизогенизации превращаются в токсигенные.

Практическое использование фагов

Фаготерапия (применение бактериальных вирусов для лечения бактериальных инфекций) была проблемой, весьма интересующей ученых еще 60 лет назад. Открытие пенициллина и других антибиотиков в 1940-х гг. обеспечило более результативный и многосторонний подход к подавлению вирусных заболеваний и спровоцировало к закрытию работ в данной области.

В связи с катастрофически возрастающей антибиотикорезистентностью и отсутствием в ближайшей перспективе новых антибактериальных средств возродился активный интерес к фаготерапии.

Научные данные последних десятилетий доказывают, что в отличие от антибиотиков препараты бактериофагов имеют следующие положительные качества:

Размножаясь, они самостоятельно регулируют свою численность (увеличивая или уменьшая ее), поскольку размножаются только до тех пор, пока имеются чувствительные бактерии, а затем постепенно элиминируются из организма и окружающей среды;
они гораздо более специфичны, чем большинство антибиотиков; будучи нацелены на конкретные проблемные бактерии, вызывают гораздо меньшее повреждение нормального микробного баланса организма. Бактериальный дисбаланс, или «дисбиоз», вызванный лечением многими антибиотиками, может привести к серьезным вторичным инфекциям с участием достаточно резистентных бактерий, увеличивающим затраты на лечение и летальность. Специфические проблемы, возникающие в результате, включают инфекции, вызванные псевдомонадами, трудно поддающиеся лечению, и Clostridium difficile, причину серьезной диареи и псевдомембранозного колита;
фаги имеют возможность использовать в качестве мишеней рецепторы на бактериальной поверхности, участвующие в патогенезе, а это означает, что вирулентность любых резистентных к ним мутантов ослаблена;
в отношении фаговой терапии описано мало побочных эффектов;
фаговая терапия была бы особенно применима для лиц с аллергией к антибиотикам;
должным образом селекционированные фаги можно легко использовать профилактически, способствуя предотвращению бактериальных заболеваний у людей или животных при контакте с микробами, либо для санации больниц и борьбы с госпитальными инфекциями;
фаг можно использовать либо независимо, либо в сочетании с другими антибиотиками, с целью уменьшения вероятности развития резистентности бактерий;
фаги не воздействуют на нормофлору кишечника и препараты эубиотиков и протобиотиков, что дает возможность для их совместного применения.

Обладая широким спектром антибактериальной активности и клинической эффективности, бактериофаги эффективны против лекарственно-устойчивых организмов, что предоставляет возможность расценивать их как аналоги или заменители антибиотиков и средства противосептической терапии.

Фаготерапия может использоваться профилактически с целью борьбы с распространением инфекционного заболевания там, где источник идентифицирован на ранней стадии, или там, где вспышки случаются внутри сравнительно закрытых организаций, таких как школы или детские сады.

Активность лечебно-профилактических бактериофагов при инфекционных болезнях пищеварительной системы, гнойно-септических заболеваниях кожных покровов, кровеносной системы, дыхательной системы, опорно-двигательного аппарата, мочеполовой системы (более 180 нозологических единиц заболеваний, вызванных бактериями Klebsiella, Escherichiae, Proteus, Pseudomonas, Staphylococcus, Streptococcus, Serratia, Enterobacter) довольно высока – от 72 до 90% – и часто является единственным эффективным лечебным средством. Также это касается штаммов больничного происхождения, характеризующихся множественной устойчивостью к антибиотикам.

Препараты бактериофагов

Лечебно-профилактические препараты бактериофагов составлены из поликлональных патогенных бактериофагов обширной сферы действия, действенных относительно антибиотикоустойчивых бактерий. По составу различают поливалентные (активные по отношению к различным видам и сероварам одного возбудителя) и комбинированные (с содержанием фагов к нескольким возбудителям) бактериофаги, что позволяет получить лечебный эффект при наличии микробных ассоциаций. ФГУП «НПО «Микроген» Минздрава России выпускает большой спектр лекарственных бактериофагов: стафилококковый, стрептококковый, коли, протейный, синегнойный, клебсиеллезный, брюшнотифозный, дизентерийный, сальмонеллезный. Имеются и их комбинированные формы: колипротейный бактериофаг, интести бактериофаг (смесь стерильных фильтратов фаголизатов бактерий: Shigella Flexneri 1-6 серогруппы В, Sonnei серогруппы D; Salmonella paratyphi A,B, Typhimurium, Choleraesuis, Oranienburg, Enteritidis, наиболее распространенных серологических групп E. coli – 0111, 055, 026, 125, 0119, 0128, 018, 044, 025, 020, Proteus (vulgaris, mirabilis), Staphylococcus, Pseudomonas, Enterococcus – титр фага не менее 1 х 106).

Препараты бактериофагов представляют собой стерильный фильтрат бактериальных фаголизатов, их прописывают для применения внутрь, местно для орошения повреждений и слизистых, введения в полости матки, мочевого пузыря, уха, придаточных пазух, а также в дренированные полости – брюшную, плевральную, а также в полости нарывов и гнойников после удаления экссудата. Бактериофаги способны стремительно проникать в кровоток, лимфатическую систему, а удаляются из организма вместе с мочой. Соответствие препаратов бактериофагов нынешней атиологической структуре возбудителей достигается производством штаммов, или штаммов-продуцентов, или синтезированного материала, не подлежащего каким-либо трансформациям. Такая пластичность бактериофаговых препаратов обеспечивает продолжительный эффект первичной фагоустойчивости возбудителей. Применение бактериофагов для лечения инфекционных заболеваний инициирует факторы специфического и неспецифического иммунитета, что в особенности результативно для терапии длительных инфекционных заболеваний, возникших в результате ослабления иммунитета на фоне депрессивного расстройства при бактерионосительстве. Научными исследованиями, во время клинических наблюдений, методом эксперимента выявлена несостоятельность плазмид передавать антибиотикам иммунитет к токсигенности профилактико-терапевтическим препаратам бактерионосительства, потому что они являются поликлональными комплексами вирулентных бактериофагов.

При использовании бактериофагов в крупных клиниках целесообразно включать в состав производственных штаммов, на которых готовятся коммерческие препараты, госпитальные штаммы возбудителей гнойно-воспалительных заболеваний, характерных для данного стационара. Отечественными неонатологами показана высокая эффективность фаготерапии гнойно-септических инфекций у детей раннего возраста. Помимо литического действия на микробы, отмечают их значение в механизме антитоксического, клеточного и гуморального иммунитета. Изучение возможности применения бактериофагов как альтернативы антибиотикотерапии для лечения острой кишечной инфекции (ОКИ) у детей в возрасте до 3 лет, проводимое на кафедре детских инфекционных болезней КНМУ, показало высокую эффективность поливалентного Интести-бактериофага. Был сделан вывод о возможности проведения этиотропной терапии поливалентным Интести-бактериофагом без включения антибиотиков больным ОКИ в легкой и средне-тяжелой форме даже в условиях общего кишечного отделения.

Дисбиоз как актуальная проблема у детей

В последние годы актуальной задачей в педиатрии остается рациональная фармакотерапия дисбиозов различного генеза. В особенности актуальна проблема дисбиоза кишечника у детей раннего возраста. Результаты современных исследований свидетельствуют о наличии дисбактериоза кишечника I-II степени у 50% здоровых детей грудного возраста, III-IV степени - у 20-25% детей. Нарушения микробиоценоза кишечника наблюдают практически при всех заболеваниях детского возраста. При формировании дисбактериоза усугубляется общее состояние пациента, снижается резистентность организма к инфекционным и антигенным агентам, толерантность к пищевым продуктам. Все это создает фон для более тяжелого течения заболеваний, возникновения осложнений, перехода острых форм в хронические. Дети первого полугода жизни особенно подвержены дисбиозу, что обусловлено транзиторной недостаточностью ферментов (в основном лактазы), незрелостью вегетативной нервной системы (ВНС), регулирующей моторику кишечника, несформированностью иммунных механизмов.

Основными причинами возникновения дисбиоза кишечника в детском возрасте являются:

Несвоевременное начало и неправильное ведение лактации;
ранний переход и нерациональное искусственное вскармливание на первом году жизни ребенка и нарушение режима питания  в старшем возрасте;
острые кишечные инфекции и заболевания пищеварительного канала неинфекционного характера;
нерациональное применение антибиотиков и других химиотерапевтических препаратов;
аллергическая предрасположенность;
снижение естественной резистентности организма.

Лечение пациентов с дисбиозом кишечника следует проводить дифференцированно и начинать с выявления основного заболевания, без лечения которого признаки дисбиоза рецидивируют. Длительность одного курса лечения детей индивидуальна и колеблется от 10 сут. до 1,52 мес. Повторные курсы проводят после промежуточного бактериологического контроля (исследование кала) не ранее, чем через 2 нед. после окончания курса терапии. Суммарная длительность восстановления (до уровня устойчивой клинической компенсации) зависит от многих сопутствующих факторов и составляет 69 мес.

В современной детской гастроэнтерологии используется широкий арсенал препаратов для коррекции нарушенного микробиоценоза кишечника. В клинической практике педиатры и гастроэнтерологи для коррекции дисбиоза всe чаще используют бактериофаги. Применяют коли-протейный, стафилококковый, синегнойный, поливалентный дизентерийный, сальмонеллезный, комбинированный (смесь стафилококкового, стрептококкового, коли, синегнойного, протейного бактериофагов), поливалентный пиобактериофаг, интестифаг и др. Применение специфических бактериофагов позволяет оптимальным образом осуществить селективную деконтаминацию, проводимую при ряде патологических состояний с целью санирующего эффекта, а также для восстановления нормального микробиоценоза. Являясь безвредным биологическим методом лечения, бактериофаготерапия может применяться у детей раннего возраста. Для получения положительных результатов использования бактериофагов необходимо предварительное исследование чувствительности к ним микроорганизмов.

Коли-протейный бактериофаг жидкий мы применяем при лечении детей с дисбиозом, обусловленным энтеропатогенной кишечной палочкой (эшерихией) и протеем (мирабилис или вульгарным). Бактериофаг назначаем внутрь или в клизме. Суточная доза препарата для применения внутрь: детям в возрасте до 6 мес. 5 мл 3 раза в сутки внутрь и 10 мл 1 раз в сутки в клизме вместо одного из приемов через рот; от 6 мес. до 1 года 1015 мл 2 раза в сутки внутрь и 20 мл 1 раз в сутки в клизме; в возрасте 13 лет 1520 мл 2 раза в сутки внутрь и 40 мл 1 раз в сутки в клизме; старше 3 лет 20 мл 2 -3 раза в сутки внутрь и 40-60 мл 1 раз в сутки в клизме. Внутрь бактериофаг назначают за 1-1,5 ч до еды. Детям первого месяца жизни бактериофаг разводят кипяченой водой в 2 раза. Детям старше 6 мес. за 5-10 мин до введения препарата дают 10-20 мл (в зависимости от возраста) 2-3%-ного раствора натрия гидрокарбоната для нейтрализации желудочного сока. Курс лечения составляет 5-10 сут. в зависимости от степени выраженности дисбиотических нарушений.

В клизме препарат целесообразно применять при отсутствии синдрома мальабсорбции: детям до 6 мес. - 20 мл, от 6 мес. до 3 лет - 30-40 мл, старше 3 лет - 40–50 мл. Препарат вводят 1 раз в сутки 23 курсами продолжительностью 3-4 сут. С интервалом между курсами 3 сут. Противопоказаний к применению препарата нет. Назначение бактериофага не исключает применения других ЛС.

Стафилококковый бактериофаг жидкий мы назначаем внутрь в суточной дозе: детям до 6 мес. - 20 мл, 6 мес. - 3 года - 40 мл, старше 3 лет - 100 мл. Вводят в 2 приема, натощак, за 1,5-2 ч до еды. В клизме в этих же дозах следует вводить 1 раз в сутки по той же схеме.

Поскольку мы в реальной клинической практике при дисбиозах встречаемся с одновременным ростом различных представителей патогенной микрофлоры, важно назначение в подобных случаях с учетом данных бактериологических исследований комбинированных бактериофагов - смеси стафилококкового, стрептококкового, коли, синегнойного, протейного бактериофагов. Их назначают детям в возрасте до 3 лет по 3-5 мл 3 раза в сутки внутрь и 10 мл 1 раз в сутки в клизме; старше 3 лет - 5-10 мл 3 раза в сутки внутрь и 10 мл 1 раз в сутки в клизме. Внутрь назначают за 1 ч до еды. Возможно дополнительное введение комбинированного фага в высокой клизме по 5-20 мл. Курс лечения 5-15 сут.

Интестифаг содержит фаголизаты кишечной палочки, шигеллезы сальмонелл, УПМ. Назначают внутрь за 1 ч до еды детям в возрасте до 3 лет по 3-5 мл 3 раза в сутки внутрь и 10 мл 1 раз в сутки в клизме; детям старше 3 лет - по 5-10 мл 3 раза в сутки внутрь и 10 мл 1 раз в сутки в клизме. Курс лечения 5-6 сут.

Поливалентный пиобактериофаг, или секстифаг - смесь фаголизатов кишечной палочки, клебсиеллы, синегнойной палочки, стафилококка, стрептококка, протея. Данный препарат отличается наиболее высокой степенью очистки от бактериальных метаболитов, что значительно улучшает его вкусовые качества и делает средством первого выбора у детей до года. Назначают: детям в возрасте до 3 лет - 3-5 мл 3 раза в сутки внутрь и 10 мл 1 раз в сутки в клизме; старше 3 лет - 5-10 мл 3 раза в сутки внутрь и 10 мл 1 раз в сутки в клизме. Внутрь применяют за 1 ч до еды. Курс лечения 5-15 сут.

Применение фагов предшествует назначению кислотообразующих препаратов (пребиотиков, пробиотиков и др.).

Заключение

Препараты бактериофагов эффективны при лечении болезней, вызванных антибиотикоустойчивыми штаммами микроорганизмов, в частности при лечении паратонзиллярных гнойников, воспалений пазух носа, а также гнойно-септических инфекций, реанимационных больных, хирургических заболеваний, циститов, пиелонефритов, холециститов, гастроэнтероколитов, дисбактериоза кишечника, воспалительных заболеваний и сепсиса новорожденных. При обширно распространенном формировании стабильности к антибиотикам у патогенных бактерий необходимость в новых антибиотиках и альтернативных технологиях контроля за микробными инфекциями завоевывает все большую значимость. Бактериофагам, вероятно, еще предстоит исполнить свою роль в лечении инфекционных заболеваний как при их независимом применении, так и в сочетании с антибиотико-терапией.

Литература

1. Антибиотики-убийцы: [история открытия, польза и вред, противопоказания, ищем замену, когда нет выхода]. М.: Эксмо, 2007.
2. Приворотский В.Ф., Лупова Н.Е., Шильникова О.В. Логика построения корригирующих медикаментозных программ нарушенного микробиоценоза кишечника у детей // РМЖ. 2007. №1. С. 6–9.
3. Бельмер С.В. Антибиотик-ассоциированный дисбактериоз кишечника // РМЖ. 2004. Т. 12. №3. С. 148–151.
4. Методы нормализации пищеварения у детей с дисбактериозом: пособие для врачей / под ред. академика РАМН А.А. Баранова. М., 2005. С. 38–39.
5. Заболевания кишечника. Справочник для практических врачей «Ремедиум-врач». М.: ООО «Издательство «Ремедиум». С. 74–76.
6. Государственный реестр лекарственных средств. М.: МЗиСР (интернет версия www.drugreg.ru) .
7. Нижевич А.А., Хасанов Р.Ш., Нуртдинова Н.М., Очилова Р.А., Логиновская В.В., Калметьева Л.Р. Антибиотик-ассоциированный дисбактериоз кишечника у детей // РМЖ. 2007. №1. С. 12–15.
8. Щербаков П.Л., Цветков П.М., Нечаева Л.В. Профилактика диареи, связанной с приемом антибиотиков у детей // Вопросы современной педиатрии. 2004. Т. 3. №2.
9. Корман Д.Б. Основы противоопухолевой химиотерапии. М.: Практическая медицина, 2006.
10. Зеленин К.Н. Возникновение и развитие химиотерапии.
11. Урсова Н.И. Дисбактериоз кишечника у детей: руководство для практических врачей / под ред. Г.В. Римарчук. М.: «Компания БОРГЕС», 2006.
12. Ларчини Д., Паренти Ф. Антибиотики / пер. с англ. Ю.В. Дудника. М.: Мир, 1985.
13. Клинико-иммунологическая эффективность иммунобиологических препаратов / под ред. М.П. Костинова и И.В. Медуницына. М.: Миклош, 2004. С. 195–206.
14. Стент Г. Молекулярная биология вирусов бактерий / пер. с англ. М., 1965.
15. Хейс У. Генетика бактерий и бактериофагов / пер. с англ. М., 1965.
16. Шлегель Г. Общая микробиология / пер. с нем. М., 1987. С. 142.


В 1896 г. русский Владимир Ааронович Хавкин обнаружил антимикробную активность водных образцов из рек Индии. Эти препараты, предварительно пропущенные через бактериальные фильтры, ингибировали рост культуры холерного вибриона .

В 1898 г. русский Н.Ф. Гамалея наблюдал растворение культуры возбудителя сибирской язвы под действием фильтрата этого микроорганизма и назвали его (фильтрат) бактериолизином.

В 1915 г. англичанин Эдвард Творт описал агент, проходящий через бактериальный фильтр и вызывающий лизис стафилококков .

В 1917 г. француз Феликс Д"Эррель – обнаружил феномен литического действия фильтрата испражнений переболевшего дизентерией , что выразилось в просветлении бульонной культуры и образовании «стерильных пятен» на агаровой культуре возбудителя. Он назвал это явлениебактериофагией , а литический агент, способный размножаться на гомологичных бактериях, -бактериофагом (от лат. phagos - пожираюший бактерии). В книге "Бактериофаги" (1922) Д"Эррель рассмотрел природу фага, методы его выделения. Вся его дальнейшая деятельность была посвящена изучению бактериофагов, их использованию в лечении инфекционных заболеваний -фаготерапии .

В настоящее время бактериофаги применяют в медицине для диагностики, лечения и профилактики инфекционных заболеваний.

Владимир Ааронович Хавкин

(15.03 1860, Одесса, Россия, - 26.10.1930, Лозанна, Швейцария), бактериолог

Никола́й Фёдорович Гамалея

(5 (17) февраля 1859 , Одесса - 29 марта 1949 , Москва ), советский микробиолог, эпидемиолог

Фредерик Туорт (22.10.1877, Камберли, Англия, - 20.03.1950,

там же), английский микробиолог.

Феликс Д"Эрелль (25.04.1873, Монреаль, - 22.02.1949, Париж), бактериолог.

Специфичность взаимодействия фагов с бактериями .

Для бактериофагов характерна строгая специфичность, что может выражаться в способности лизировать бактерии только одного вида - видовая специфичность, либо внутри вида – типовая специфичность. Если фаги лизируют бактерии близких видов, входящих в один род, например в род Shigella (возбудители дизентерии), то их называют поливалентными. Типовая специфичность применяется для типирования (фаготипирования) бактерий с целью выявления источника инфекции.

По конечному результату взаимодействия с клеткой все фаги можно разделить навирулентные иумеренные.

Типирование штаммов стафилококков

(Н.Р. Иванов, Л.М. Скитева, Н.С. Солун «Бактериологическая диагностика и профилактика стафилококковых заболеваний»

Культура засевается в бульон (Хоттингера или Мартена), инкубируется три часа, а затем пересевается «газоном» на чашки с МПА, содержащим 0,025-0,04% хлористого кальция. Дно чашки предварительно разграфляют на квадраты, количество которых соответствует числу фагов.

Стандартный набор включает 21 фаг (80, 79, 52А, 52, 29, 71, 55, 3С, 3В, 3А, 53,47,42Е, 7, 6, 42Д, 77,75, 83А, 54, 81, 187.

Засеянные чашки подсушивают при температуре 37° в течение 30-40 минут, затем петлей наносят каплю соответствующего фага всегда в одном и том же порядке.

Если культур много, то чашки расставляют на столе (в боксе) и снимают крышки. Пастеровской пипеткой набирают первую, а затем очередную по порядку расу тест-фага и наносят небольшие капли на соответствующий квадрат в каждой чашке. При этом прикасаться к агару нельзя во избежание переноса исследуемых культур с одной чашки на другую. После -высыхания капель фагов чашки помещают в перевернутом положении на 5-6 часов в термостат (температура 37°) и до утра оставляют при комнатной температуре. Учет результатов производят простым глазом и при помощи лупы, отмечая номер фага, давшего лизис на + + и выше, а в скобках отмечают номер фага, давшего лизис на +.

Об авторах

Валентин Викторович Власов — академик РАН, доктор химических наук, профессор, директор Института химической биологии и фундаментальной медицины СО РАН (Новосибирск). Лауреат Государственной премии РФ (1999). Автор и соавтор более 300 научных работ и 20 патентов.

Вера Витальевна Морозова — кандидат биологических наук, старший научный сотрудник лаборатории молекулярной микробиологии Института химической биологии и фундаментальной медицины СО РАН (Новосибирск). Автор более 30 научных работ и 6 патентов.

Игорь Викторович Бабкин — кандидат биологических наук, ведущий научный сотрудник лаборатории молекулярной микробиологии Института химической биологии и фундаментальной медицины СО РАН (Новосибирск). Автор и соавтор 58 научных работ и 2 патентов.

Нина Викторовна Тикунова — доктор биологических наук, заведующая лабораторией молекулярной микробиологии Института химической биологии и фундаментальной медицины СО РАН (Новосибирск). Автор и соавтор 120 научных работ и 21 патента.

В середине прошлого века биологическая наука сделала революционный шаг вперед, установив молекулярные основы функционирования живых систем. Огромную роль в успешных исследованиях, которые привели к определению химической природы наследственных молекул, расшифровке генетического кода и созданию технологий манипуляций генами, сыграли бактериофаги, открытые еще в начале прошлого столетия. На сегодняшний день эти бактериальные вирусы освоили много полезных для человека «профессий»: их используют не только как безопасные антибактериальные препараты, но и как дезинфектанты и даже в качестве основы для создания электронных наноустройств.

Когда в 1930-х гг. группа ученых занялась проблемами функционирования живых систем, то в поиске простейших моделей они обратили внимание на бактериофаги - вирусы бактерий. Ведь среди биологических объектов нет ничего проще, чем бактериофаги, к тому же их можно легко и быстро выращивать и анализировать, а вирусные генетические программы невелики.

Фаг - это минимального размера природная структура , содержащая плотно упакованную генетическую программу (ДНК или РНК), в которой нет ничего лишнего. Эта программа заключена в белковую оболочку, снабженную минимальным набором устройств для ее доставки внутрь бактериальной клетки. Бактериофаги не могут размножаться сами по себе, и в этом смысле их нельзя считать полноценными живыми объектами. Их гены начинают работать только в бактерии, используя имеющиеся в бактериальной клетке биосинтетические системы и запасы молекул, необходимых для синтеза. Однако генетические программы этих вирусов принципиально не отличаются от программ более сложных организмов, поэтому эксперименты с бактериофагами позволили установить основополагающие принципы устройства и работы генома.

В дальнейшем эти знания и разработанные в ходе исследований методы стали фундаментом для развития биологической и медицинской науки, а также широкого спектра биотехнологических приложений.

Борцы с патогенами

Первые попытки использовать бактериофаги для лечения инфекционных заболеваний были предприняты практически сразу после их открытия, однако недостаток знаний и несовершенные биотехнологии того времени не позволили достичь полного успеха. Тем не менее дальнейшая клиническая практика показала принципиальную возможность успешного применения бактериофагов при инфекционных заболеваниях желудочно-кишечного тракта, мочеполовой системы, при острых гнойно-септических состояниях больных, для лечения хирургических инфекций и т. д.

По сравнению с антибиотиками бактериофаги имеют ряд преимуществ : они не вызывают побочных эффектов, к тому же строго специфичны для определенных видов бактерий, поэтому при их использовании не нарушается нормальный микробиом человека. Однако такая высокая избирательность создает и проблемы: чтобы успешно лечить пациента, нужно точно знать инфекционный агент и подбирать бактериофаг индивидуально.

Фаги можно использовать и профилактически. Так, Московский научно-исследовательский институт эпидемиологии и микробиологии им. Г. Н. Габричевского разработал профилактический продукт «ФУДФАГ» на основе коктейля из бактериофагов, снижающий риск заражения острыми кишечными инфекциями. Клинические исследования показали, что недельный прием препарата позволяет избавиться от гемолизирующей кишечной палочки и других патогенных и условно-патогенных бактерий, вызывающих дисбактериоз кишечника.

Бактериофагами лечат инфекционные болезни не только людей, но и домашних и сельскохозяйственных животных: мастит у коров, колибактериоз и эшерихиоз у телят и свиней, сальмонеллез у кур... Особенно удобно применять фаговые препараты в случае аквакультуры - для лечения промышленно выращиваемых рыб и креветок, так как в воде они долго сохраняются. Бактериофаги помогают защитить и растения , хотя применение фаговых технологий в этом случае затруднено из-за воздействия природных факторов, таких как солнечный свет и дождь, губительных для вирусов.

Фаги могут сыграть большую роль в поддержании микробиологической безопасности продуктов питания, так как применение антибиотиков и химических агентов в пищевой отрасли не решает эту проблему, одновременно снижая уровень экологической чистоты продукции. О серьезности самой проблемы говорят статистические данные: например, в США и России ежегодно регистрируется до 40 тыс. заболевших сальмонеллезом, из которых 1% умирает. Распространение этой инфекции в значительной степени связано с выращиванием, переработкой и потреблением различных видов птицы, и попытки применить для борьбы с ней бактериофаги дали многообещающие результаты.

Так, американская компания Intralytix производит фаговые препараты для борьбы с листериозом, сальмонеллезом и бактериальным загрязнением кишечной палочкой. Они разрешены к применению как добавки, предотвращающие размножение бактерий на продуктах питания - их распыляют на продукты из мяса и домашней птицы, а также на овощи и фрукты. Эксперименты показали, что коктейль из бактериофагов может быть успешно применен и при транспортировке и реализации живой прудовой рыбы для снижения бактериального загрязнения не только воды, но и самой рыбы.

Очевидным применением бактериофагов является дезинфекция , то есть уничтожение бактерий в тех местах, где их не должно быть: в больницах, на пищевых производствах и т. п. Для этой цели британская компания Fixed-Phage разработала метод фиксации фаговых препаратов на поверхностях, обеспечивающий сохранение биологической активности фагов до трех лет.

Бактериофаги - «дрозофилы» молекулярной биологии

В 1946 г. на 11-м симпозиуме в знаменитой американской лаборатории в Колд Спринг Харборе, была провозглашена теория «один ген - один фермент». Бактериолог А. Херши и «бывший» физик, молекулярный биолог М. Дельбрюк доложили об обмене генетическими признаками между различными фагами при одновременном заражении ими клеток кишечной палочки. Это открытие, сделанное в то время, когда физический носитель гена еще не был известен, свидетельствовало, что явление «рекомбинации» - перемешивания генетических признаков, свойственно не только высшим организмам, но и вирусам. Обнаружение этого феномена в дальнейшем дало возможность детально исследовать молекулярные механизмы репликации. Позднее эксперименты с бактериофагами позволили установить принципы устройства и работы генетических программ.

В 1952 г. А. Херши и М. Чейз экспериментально доказали, что наследственная информация бактериофага Т2 закодирована не в белках, как считали многие ученые, а в молекулах ДНК (Hershey & Chase, 1952). Исследователи проследили за процессом воспроизводства в двух группах бактериофагов, одна из которых несла меченные радиоактивной меткой белки, а другая - молекулы ДНК. После инфицирования бактерий такими фагами оказалось, что в зараженную клетку передается только вирусная ДНК, что и послужило доказательством ее роли в хранении и передаче наследственной информации.

В том же году американские генетики Д. Ледерберг и Н. Циндлер в эксперименте с участием двух штаммов сальмонелл и бактериофага Р22 установили, что бактериофаг способен в процессе размножения включать в себя фрагменты ДНК бактерии-хозяина и передавать их другим бактериям при заражении (Zinder & Lederberg, 1952). Это явление переноса генов от бактерии-донора к реципиенту было названо «трансдукцией». Результаты эксперимента стали очередным подтверждением роли ДНК в передаче наследственной информации.

В 1969 г. А. Херши, М. Дельбрюк и их коллега С. Луриа стали Нобелевскими лауреатами «за открытия, касающиеся механизма репликации и генетической структуры вирусов».

В 1972 г. Р. Берд с коллегами при изучении процесса репликации (копировании клеточной информации) ДНК кишечной палочки использовали бактериофаги в качестве зондов, способных встраиваться в геном бактериальной клетки, и обнаружили, что процесс репликации идет в двух направлениях вдоль хромосомы (Стент, 1974).

Семь дней творения

Современные методы синтетической биологии позволяют не только вносить различные модификации в фаговые геномы, но и создавать полностью искусственные активные фаги. Технологически это несложно, нужно только синтезировать фаговый геном и ввести его в бактериальную клетку, а там он уже сам запустит все процессы, необходимые для синтеза белков и сборки новых фаговых частиц. В современных лабораториях на эту работу уйдет всего несколько дней.

Генетические модификации применяют, чтобы изменить специфичность фагов и повысить эффективность их терапевтического действия. Для этого наиболее агрессивные фаги снабжают узнающими структурами, связывающими их с целевыми бактериями. Также в вирусные геномы дополнительно встраивают гены, кодирующие токсические для бактерий белки, нарушающие метаболизм, - такие фаги более смертоносны для бактерий.

Бактерии имеют несколько механизмов защиты от антибиотиков и бактериофагов , один из которых - разрушение вирусных геномов ферментами рестрикции , действующими на определенные нуклеотидные последовательности. Для увеличения терапевтической активности фагов можно за счет вырожденности генетического кода так «переформатировать» последовательности их генов, чтобы минимизировать число нуклеотидных последовательностей, «чувствительных» к ферментам, одновременно сохранив их кодирующие свойства.

Универсальный способ защиты бактерий от всех внешних воздействий - так называемые биофильмы , пленки из ДНК, полисахаридов и белков, которые бактерии создают совместными усилиями и куда не проникают ни антибиотики, ни терапевтические белки. Такие биопленки - головная боль врачей, так как они способствуют разрушению зубной эмали, образуются на поверхности имплантов, катетеров, искусственных суставов, а также в дыхательных путях, на поверхности кожи и т. п. Для борьбы с биофильмами были сконструированы особые бактериофаги, содержащие ген, кодирующий специальный литический фермент, разрушающий бактериальные полимеры.

Ферменты «от бактериофага»

Большое число ферментов, сегодня широко использующихся в молекулярной биологии и генетической инженерии, были открыты в результате исследований бактериофагов.

Одним из таких примеров являются ферменты рестриктазы - группа бактериальных нуклеаз, расщепляющих ДНК. Еще в начале 1950-х гг. было обнаружено, что бактериофаги, выделенные из клеток одного штамма бактерий, зачастую плохо размножаются в близкородственном штамме. Обнаружение этого феномена означало, что у бактерий есть система подавления размножения вирусов (Luria & Human, 1952). В результате была открыта ферментативная система рестрикции-модификации, с помощью которой бактерии разрушали попавшую в клетку чужеродную ДНК. Выделение рестриктаз (эндонуклеаз рестрикции) дало в руки молекулярных биологов бесценный инструмент, позволивший манипулировать ДНК: встраивать одни последовательности в другие или вырезать необходимые фрагменты цепи, что в итоге привело к разработке технологии создания рекомбинантной ДНК.

Еще один широко используемый в молекулярной биологии фермент - ДНК-лигаза бактериофага Т4, которая «сшивает» «липкие» и «тупые» концы двуцепочечных молекул ДНК и РНК. А недавно появились генно-модифицированные варианты этого фермента с большей активностью.

От бактериофагов ведут свое происхождение и большинство используемых в лабораторной практике РНК-лигаз, которые «сшивают» одноцепочечные молекулы РНК и ДНК. В природе они в основном служат для починки сломанных молекул РНК. Исследователи наиболее часто используют РНК-лигазу бактериофага Т4, с помощью которой можно «пришить» одноцепочечные полинуклеотиды к РНК-молекулам, чтобы пометить их. Такой прием применяется для анализа структуры РНК, поиска мест связывания РНК с белками, олигонуклеотидного синтеза и т. д. Недавно среди рутинно используемых ферментов появились термостабильные РНК-лигазы, выделенные из бактериофагов rm378 и TS2126 (Nordberg Karlsson, et al., 2010; Hjorleifsdottir, 2014).

Из бактериофагов получены и некоторые из еще одной группы чрезвычайно важных ферментов - полимераз. Например, очень «точная» ДНК-полимераза бактериофага Т7, которая нашла применение в различных областях молекулярной биологии, таких как сайт-направленный мутагенез, но в основном ее используют для определения первичной структуры ДНК.

Химически модифицированная ДНК-полимераза фага Т7 была предложена как идеальный инструмент для секвенирования ДНК еще в 1987 г. (Tabor & Richardson, 1987). Модификация этой полимеразы увеличила эффективность ее работы в несколько раз: скорость полимеризации ДНК при этом достигает более 300 нуклеотидов в секунду, поэтому ее можно использовать для амплификации больших фрагментов ДНК. Этот фермент стал предшественником секвеназы - генно-инженерного фермента, оптимизированного для секвенирования ДНК в реакции Сэнгера. Секвеназа отличается высокой эффективностью и способностью включать в последовательность ДНК нуклеотидные аналоги, используемые для улучшения результатов секвенирования.

Происхождение от бактериофагов ведут и используемые в молекулярной биологии основные РНК-полимеразы (ДНК-зависимые РНК-полимеразы) - ферменты, которые катализируют процесс транскрипции (считывание РНК-копий с матрицы ДНК). К ним относятся SP6-, T7- и Т3-РНК-полимеразы, названные в честь соответствующих бактериофагов SP6, Т7 и Т3. Все эти ферменты используются для синтеза «в пробирке» антисмысловых РНК-транскриптов, меченых РНК-зондов и т. д.

Первым полностью секвенированным ДНК-геномом стал геном фага φ174 длиной свыше 5 тыс. нуклеотидов (Sanger et al., 1977). Эту расшифровку осуществила группа английского биохимика Ф. Сэнгера, создателя известного одноименного метода секвенирования ДНК.

Полинуклеотидкиназы катализируют перенос фосфатной группы от молекулы АТФ к 5′-концу молекулы нуклеиновой кислоты, обмен 5′-фосфатных групп или фосфорилирование 3′-концов мононуклеотидов. В лабораторной практике наибольшее распространение получила полинуклеотидкиназа бактериофага Т4. Она обычно используется в экспериментах для мечения ДНК радиоактивным изотопом фосфора. Полинуклеотидкиназа также используется для поиска сайтов рестрикции, ДНК и РНК дактилоскопии, синтеза субстратов для ДНК или РНК-лигаз.

В молекулярно-биологических экспериментах также находят широкое применение такие ферменты бактериофагов, как полинуклеотидкиназа фага Т4, обычно используемая для мечения ДНК радиоактивным изотопом фосфора, ДНК и РНК дактилоскопии и др., а также ферменты, расщепляющие ДНК, которые используются для получения одноцепочечных ДНК-матриц для секвенирования и анализа нуклеотидного полиморфизма.

Методами синтетической биологии удалось разработать и бактериофаги, вооруженные самым изощренным оружием, которое бактерии используют против самих фагов. Речь идет о бактериальных системах CRISPR-Cas , представляющих собой комплекс фермента нуклеазы, расщепляющей ДНК, и РНК-последовательности, направляющей действие этого фермента на определенный фрагмент вирусного генома. В качестве «указателя» служит кусочек фаговой ДНК, который бактерия сохраняет «на память» в специальном гене. При обнаружении внутри бактерии аналогичного фрагмента этот белково-нуклеотидный комплекс разрушает его.

Разобравшись с механизмом работы систем CRISPR-Cas, исследователи попробовали снабдить подобным «оружием» и самих фагов, для чего в их геном ввели комплекс генов, кодирующий нуклеазу и адресующие последовательности РНК, комплементарные специфическим участкам генома бактерий. «Мишенью» могут выступать гены, ответственные за множественную лекарственную устойчивость. Эксперименты увенчались полным успехом - такие фаги с большой эффективностью поражали бактерии, на которые были «настроены».

Фаговые антибиотики

В терапевтических целях фаги необязательно использовать напрямую. За миллионы лет эволюции бактериофаги разработали арсенал специфических белков - инструментов для распознавания целевых микроорганизмов и манипуляций с биополимерами жертвы, на основе которых можно создавать противобактериальные препараты. Наиболее перспективными белками такого типа являются ферменты эндолизины, которые фаги используют для разрушения клеточной стенки при выходе из бактерии. Сами по себе эти вещества являются мощными антибактериальными средствами, нетоксичными для человека. Эффективность и направленность их действия можно повысить, изменив в них адресующие структуры - белки, специфически связывающиеся с определенными бактериями.

Большинство бактерий делятся по устройству клеточной стенки на грамположительные, мембрана которых покрыта очень толстым слоем пептидогликанов, и грамотрицательные, у которых слой пептидогликана расположен между двумя мембранами. Использование природных эндолизинов особенно эффективно в случае грамположительных бактерий (стафилококков, стрептококков и др.), поскольку пептидогликановый слой у них расположен снаружи. Грамотрицательные бактерии (синегнойная палочка, сальмонеллы, кишечная палочка и др.) являются менее доступной мишенью, поскольку ферменту, чтобы добраться до внутреннего пептидогликанового слоя, необходимо проникнуть сквозь внешнюю бактериальную мембрану.

Для преодоления этой проблемы были созданы так называемые артилизины - модифицированные варианты природных эндолизинов, содержащие поликатионные или амфипатические пептиды, которые дестабилизируют внешнюю мембрану и обеспечивают доставку эндолизина непосредственно к пептидогликановому слою. Артилизины обладают высокой бактерицидной активностью и уже показали свою эффективность при лечении отитов у собак (Briers et al., 2014).

Примером модифицированного эндолизина, избирательно действующего на определенные бактерии, является препарат P128 канадской компании GangaGen Inc . Он представляет собой биологически активный фрагмент эндолизина, соединенный с лизостафином - адресующей белковой молекулой, которая связывается с поверхностью клеток стафилококков. Полученный химерный белок обладает высокой активностью против разных штаммов стафилококка, в том числе обладающих множественной лекарственной устойчивостью.

«Счетчики» бактерий

Бактериофаги служат не только разносторонним терапевтическим и «дезинфицирующим» средством, но и удобным и точным аналитическим инструментом микробиолога. К примеру, благодаря своей высокой специфичности они являются природными аналитическими реагентами для выявления бактерий определенного вида и штамма.

В простейшем варианте такого исследования в чашку Петри с питательной средой, засеянную бактериальной культурой, добавляют по капле различные диагностические бактериофаги. Если бактерия окажется чувствительной к фагу, то на этом месте бактериального «газона» образуется «бляшка» - прозрачный участок с убитыми и лизированными бактериальными клетками.

Анализируя размножение фагов в присутствии целевых бактерий, можно количественно определить численность последних. Так как количество фаговых частиц в растворе возрастет пропорционально числу содержавшихся в нем бактериальных клеток, то для оценки численности бактерий достаточно определить титр бактериофага.

Специфичность и чувствительность такой аналитической реакции достаточно высока, а сами процедуры просты в исполнении и не требуют сложного оборудования. Важно, что диагностические системы, основанные на бактериофагах, сигнализируют о наличии именно живого патогена, тогда как другие методы, такие как ПЦР и иммуноаналитические, свидетельствуют лишь о наличии биополимеров, принадлежащих этой бактерии. Такого типа диагностические методы особенно удобны для использования в экологических исследованиях, а также в пищевой индустрии и сельском хозяйстве.

Сейчас для выявления и количественного определения разных штаммов микроорганизмов применяют специальные референсные виды фагов. Очень быстрые, работающие практически в режиме реального времени аналитические системы могут быть созданы на основе генетически модифицированных бактериофагов, которые при попадании в бактериальную клетку запускают в ней синтез репортерных флуоресцирующих (или способных к люминесценции) белков, таких как люцифераза . При добавлении к подобной среде необходимых субстратов в ней будет появляться люминесцентный сигнал, величина которого соответствует содержанию бактерий в образце. Такие «меченные светом» фаги были разработаны для детекции опасных патогенов - возбудителей чумы, сибирской язвы, туберкулеза, а также инфекций растений.

Вероятно, с помощью модифицированных фагов удастся решить и давнюю задачу глобальной важности - разработать дешевые и быстрые методы детекции возбудителей туберкулеза на ранней стадии заболевания. Задача эта очень сложна, поскольку микобактерии, вызывающие туберкулез, отличаются крайне медленным ростом при культивировании в лабораторных условиях. Поэтому диагностика заболевания традиционными методами может затягиваться на срок до нескольких недель.

Фаговая технология позволяет упростить эту задачу. Суть ее в том, что к образцам анализируемой крови добавляют бактериофаг D29, способный поражать широкий спектр микобактерий. Затем бактериофаги отделяют, и образец перемешивают с быстрорастущей непатогенной культурой микобактерий, также чувствительной к этому бактериофагу. Если в крови первоначально имелись микобактерии, которые были инфицированы фагами, то в новой культуре будет также наблюдаться наработка бактериофага. Таким образом можно выявить единичные клетки микобактерий, а сам процесс диагностики с 2–3 недель сокращается до 2–5 дней (Swift & Rees, 2016).

Фаговый дисплей

В наши дни бактериофаги широко применяются также в качестве простых систем для наработки белков с заданными свойствами. Речь идет о разработанной в 1980-х гг. крайне эффективной молекулярно-селекционной методике - фаговом дисплее . Этот термин был предложен американцем Дж. Смитом, который доказал, что на основе бактериофагов кишечной палочки можно создать жизнеспособный модифицированный вирус, несущий на своей поверхности чужеродный белок. Для этого в фаговый геном внедряется соответствующий ген, который сливается с геном, кодирующим один из поверхностных вирусных белков. Такие модифицированные бактериофаги можно выделить из смеси с фагами дикого типа благодаря способности «чужого» белка связываться со специфичными антителами (Smith, 1985).

Из экспериментов Смита последовало два важных вывода: во-первых, используя технологию рекомбинантных ДНК, можно создавать огромные по разнообразию популяции численностью 10 6 –10 14 фаговых частиц, каждая из которых несет на своей поверхности разные варианты белков. Такие популяции назвали комбинаторные фаговые библиотеки . Во-вторых, выделив из популяции конкретный фаг (например, обладающий способностью связываться с определенным белком или органической молекулой), можно этот фаг размножить в бактериальных клетках и получить неограниченное число потомков с заданными свойствами.

С помощью фагового дисплея сегодня производят белки, которые могут избирательно связываться с терапевтическими мишенями, например, экспонированные на поверхности фага М13, способные узнавать и взаимодействовать с опухолевыми клетками. Роль этих белков в фаговой частице заключается в «упаковке» нуклеиновой кислоты, поэтому они хорошо подходят для создания препаратов генотерапии, только в этом случае они формируют частицу уже с терапевтической нуклеиновой кислотой.

На сегодня можно выделить два основных направления применения фагового дисплея. Технология на основе пептидов используется для исследования рецепторов и картирования сайтов связывания антител, создания иммуногенов и нановакцин, а также картирования сайтов связывания субстратов у белков-ферментов. Технология на основе белков и белковых доменов - для отбора антител с заданными свойствами, изучения белок-лигандных взаимодействий, скрининга экспрессируемых фрагментов комплементарной ДНК и направленных модификаций белков.

С помощью фагового дисплея можно вносить узнающие группировки во все виды поверхностных вирусных белков, а также в основной белок, формирующий тело бактериофага. Вводя в поверхностные белки пептиды с заданными свойствами, можно получить целый спектр ценных биотехнологических продуктов. Например, если этот пептид будет имитировать белок опасного вируса или бактерии, узнаваемый иммунной системой, то такой модифицированный бактериофаг представляет собой вакцину, которую можно просто, быстро и безопасно наработать.

Если же концевой поверхностный белок бактериофага «адресовать» на раковые клетки, а к другому поверхностному белку присоединить репортерные группы (например, флуоресцирующие или магнитные), то получится средство для обнаружения опухолей. А если к частице присоединить еще и цитотоксический препарат (а современная биоорганическая химия позволяет легко это сделать), то получится лекарство, направленно действующее на раковые клетки.

Одним из важных применений метода фагового дисплея белков является создание фаговых библиотек рекомбинантных антител, где антигенсвязывающие фрагменты иммуноглобулинов расположены на поверхности фаговых частиц fd или М13. Особый интерес представляют библиотеки антител человека, поскольку такие антитела могут быть использованы в терапии без ограничения. В последние годы только на фармацевтическом рынке США продается около полутора десятка терапевтических антител, сконструированных с использованием этого метода.

«Промышленные» фаги

Методология фагового дисплея нашла себе и совершенно неожиданное применение. Ведь бактериофаги в первую очередь являются наноразмерными частицами определенной структуры, на поверхности которых располагаются белки, которые с помощью фагового дисплея можно «снабдить» свойствами специфически связываться с нужными молекулами. Такие наночастицы открывают широчайшие возможности для создания материалов с заданной архитектурой и «умных» молекулярных наноустройств, при этом технологии их производства будут экологически чистыми.

Так как вирус представляет собой достаточно жесткую конструкцию с определенным соотношением размерностей, это обстоятельство позволяет использовать его для получения пористых наноструктур с известной площадью поверхности и нужным распределением пор в структуре. Как известно, именно площадь поверхности катализатора является критическим параметром, определяющим его эффективность. А существующие на сегодня технологии формирования на поверхности бактериофагов тончайшего слоя металлов и их оксидов позволяют получать катализаторы с чрезвычайно развитой регулярной поверхностью заданной размерности. (Lee et al., 2012).

Исследователь из Массачусетского технологического института А. Бельхер использовала бактериофаг M13 как шаблон для роста наночастиц и нанопроводов родия и никеля на поверхности оксида церия. Полученные наночастицы катализатора способствуют конвертации этанола в водород, таким образом, этот катализатор может оказаться весьма полезным для модернизации существующих и создания новых водородных топливных ячеек. Катализатор, выращенный на шаблоне вируса, отличается от аналогичного по составу «обычного» катализатора более высокой стабильностью, он менее подвержен старению и дезактивации поверхности (Nam et al. , 2012).

Путем покрытия нитчатых фагов золотом и двуокисью индия были получены электрохромные материалы - пористые нанопленки, меняющие цвет при изменении электрического поля, способные реагировать на изменение электрического поля в полтора раза быстрее известных аналогов. Подобного рода материалы перспективны для создания энергосберегающих ультратонких экранных устройств (Nam et al., 2012).

В Массачусетском технологическом институте бактериофаги стали основой для производства очень мощных и чрезвычайно компактных электрических батарей. Для этого использовали живые, генетически модифицированные фаги М13, неопасные для человека и способные присоединять к поверхности ионы различных металлов. В результате самосборки этих вирусов были получены структуры заданной конфигурации, которые при покрытии металлом сформировали достаточно длинные нанопровода, ставшие основой анода и катода. При самоформировании материала анода использовался вирус, способный присоединять золото и оксид кобальта, для катода - способный присоединять фосфат железа и серебро. Последний фаг также обладал способностью за счет молекулярного опознания «подхватывать» концы углеродной нанотрубки, что необходимо для обеспечения эффективного переноса электронов.

На основе комплексов бактериофага М13, двуокиси титана и одностенных углеродных нанотрубок были также созданы материалы для солнечных батарей (Dang et al., 2011).

Последние годы ознаменовались широкими исследованиями бактериофагов, которые находят себе все новые применения не только в терапии, но и в био- и нанотехнологиях. Их очевидным практическим результатом должно стать возникновение нового мощного направления персонализированной медицины, а также создание целого спектра технологий в пищевой промышленности, ветеринарии, сельском хозяйстве и в производстве современных материалов. Мы ждем, что второе столетие исследований бактериофагов принесет не меньше открытий, чем первое.

Литература
1. Бактериофаги: биология и применение / Ред.: Э. Каттер, А. Сулаквелидзе. М.: Научный мир. 2012.
2. Стент Г., Кэлиндар Р. Молекулярная генетика. М.: Мир. 1974. 614 с.
3. Тикунова Н. В., Морозова В. В. Фаговый дисплей на основе нитчатых бактериофагов: применение для отбора рекомбинантных антител // Acta Naturae . 2009. № 3. C. 6–15.
4. Mc Grath S., van Sinderen D. Bacteriophage: Genetics and Molecular Biology. Horizon Scientific Press, 2007.

Похожие публикации